poj1741(点分治 路径长度<=k路径数量
题意:
给一颗n个点的树,问路径长度<=k的路径有多少
思路:
点分模板题,因为是计数+<=k的路径,所以采用容斥写法,容斥写法常用加上排序等操作,这里路径长度排序后具有单调性,所以直接统计就可以了
当然还有别的如树状数组之类的统计方法,但是感觉没必要
时间复杂度 O ( n l o g 2 n ) O(nlog^2n) O(nlog2n)
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int maxn=1e4+5;
const int INF=2e9;
int head[maxn],ver[maxn<<1],next1[maxn<<1],mxson[maxn],sz[maxn],d[maxn],cnt,q[maxn],rt,S,ans,tot,n,k,edge[maxn<<1];
bool v[maxn];
void add(int x,int y,int z){
ver[++tot]=y,next1[tot]=head[x],edge[tot]=z,head[x]=tot;
}
void getRoot(int x,int f){//求重心
sz[x]=1;mxson[x]=0;
for(int i=head[x];i;i=next1[i]){
int y=ver[i];
if(y==f||v[y])continue;
getRoot(y,x);
sz[x]+=sz[y];
mxson[x]=max(mxson[x],sz[y]);
}
mxson[x]=max(mxson[x],S-sz[x]);
if(mxson[x]<mxson[rt])rt=x;
}
void getQue(int x,int f){
q[++cnt]=d[x];
for(int i=head[x];i;i=next1[i]){
int y=ver[i];
if(y==f||v[y])continue;
d[y]=d[x]+edge[i];
getQue(y,x);
}
}
int cal(int x,int cost){
d[x]=cost;cnt=0;
getQue(x,0); //获取离当前点的距离
sort(q+1,q+1+cnt);
int l=1,r=cnt,sum=0;
while(l<r){
if(q[l]+q[r]<=k){
sum+=r-l;l++;
}else r--;
}
return sum;
}
void init(int x){
S=sz[x];
rt=0;
getRoot(x,0);
}
void dfz(int x){
ans+=cal(x,0);
v[x]=1;
for(int i=head[x];i;i=next1[i]){
int y=ver[i];
if(v[y])continue;
ans-=cal(y,edge[i]);
init(y);
dfz(rt);
}
}
int main(){
while(~scanf("%d%d",&n,&k)&&n&&k){
int a,b,c;
tot=rt=ans=0;
for(int i=1;i<=n;++i)v[i]=head[i]=0;
for(int i=1;i<n;++i){
scanf("%d%d%d",&a,&b,&c);
add(a,b,c);add(b,a,c);
}
mxson[0]=INF;S=n;
getRoot(1,0);
dfz(rt);
cout<<ans<<"\n";
}
}