最大公约数和最小公倍数的经典求法(C++)及例题实战练习

最大公约数和最小公倍数的经典求法(C++)

最小公倍数:数论中的一种概念,两个整数公有的倍数成为他们的公倍数,其中一个最小的公倍数是他们的最小公倍数,同样地,若干个整数公有的倍数中最小的正整数称为它们的最小公倍数

求最小公倍数算法:
最小公倍数=两整数的乘积÷最大公约数
(1)辗转相除法

有两个整数a和b:
① a%b得余数c
② 若c=0,则b即为两数的最大公约数
③ 若c≠0,则a=b,b=c,再回去执行①
例如求27和15的最大公约数过程为:

27÷15 余12 15÷12余3 12÷3余0 因此,3即为最大公约数
#include <iostream>

using namespace std;
int main()
{
    int m, n, a, b, c;
    cout << "Input two integer numbers:\n";
    cin >> a >> b;
    m = a;
    n = b;
    while (b != 0)
    {
        c = a % b;
        a = b;
        b = c;
    }
    cout << "The largest common divisor: " << a << endl;
    cout << "The largest common multiple:" << m*n/a << endl;
    return 0;
}

一种简写的方式:

int gcd(int a, int b)
{
	return b == 0 ? a : gcd(b, a%b);
}

(2)相减法

有两整数a和b:

① 若a>b,则a=a-b

② 若a<b,则b=b-a

③ 若a=b,则a(或b)即为两数的最大公约数

④ 若a≠b,则再回去执行①

例如求2715的最大公约数过程为:

271512( 15>12 ) 15123( 12>3 )

1239( 9>3 ) 936( 6>3 )

633( 3==3 )

因此,3即为最大公约数
#include <iostream>

using namespace std;

int main()
{
    int m, n, a, b;
    cout << "Input two integer numbers:\n";
    cin >> a >> b;
    m = a;
    n = b;
    while (a != b)
    {
        if (a > b)
            a = a - b;
        else
            b = b - a;
    }
    cout << "The largest common divisor: " << a << endl;
    cout << "The least common multiple: " << m*n/a << endl;
    return 0;
}

(3)穷举法
不过因为穷举法效率比较低,一般不用

有两整数a和b:

① i=1

② 若a,b能同时被i整除,则t=i

③ i++

④ 若 i <= a(或b),则再回去执行②

⑤ 若 i > a(或b),则t即为最大公约数,结束

改进:

① i= a(或b)

② 若a,b能同时被i整除,则i即为最大公约数,

结束,否则执行下一步

③ i--,再回去执行②
#include <iostream>

using namespace std;

int main()
{
    int m, n, a, b, i, t;
    cout << "Input two integer numbers:\n";
    cin >> a >> b;
    m = a;
    n = b;
    /*for (i = 1; i <= a; ++i)
    {
        if (a % i == 0 && b % i == 0)
            t = i;
    }*/
    for (t = a; t > 0; t--)//改进版
    {
        if (a % t == 0 && b % t == 0)
            break;
    }
    cout << "The largest common divisor: " << t << endl;
    cout << "The least common multiple: " << m*n/t << endl;
}
求从1开始的连续整数的最小公倍数

需要首先明确两个数的最小公倍数的算法,a*b/a和b的最大公约数

int lcm(int a, int b)
{
	return (a * b) / gcd(a, b);
}

关于求多个数字的最小公倍数的算法:
假设有数字a, b, c, d,其最小公倍数的算法为:先求前两个数的最小公倍数ret = lcm(a, b),再求前两个数的最小公倍数和第三个数的最小公倍数,即前三个数的最小公倍数为ret = lcm(ret, c),再求前三个数的最小公倍数和第四个数的最小公倍数ret = lcm(ret, d)

int nlcm(int a[], int len)
{
	if (len == 0)
		return 0;
	int ret = a[0];
	for (int i = 1; i < len; ++i)
	{
		ret = lcm(ret, a[i]);
	}
	return ret;
}
思路分析:
先来看从1开始的连续整数的最小公倍数,以6为例:
1 2 3 4 5 6,其最小公倍数为1*2*3*2*5*1,下面说明一下这些乘子是怎么算出来的:
假设1的最大公约数为1,最小公倍数为1;增加一个数2,求1的公倍数和2的最大公约数为1,
最小公倍数为1*2/1)即为1*2;增加一个数3,求12的最小公倍数和3的最大公约数为1,
最小公倍数为1*2*3/1)即1*2*3;增加一个数4,1~3的最小公倍数
为1*2*34的最大公约数为2,最小公倍数为1*2*3*4/2)即1*2*3*2等等,依次类推,增加到6的时候,
1~5的最小公倍数和6的最大公约数为6,最小公倍数为1*2*3*2*5*6/6)即1*2*3*2*5*1,由以上推算可知,
每个乘子=n/(1...(n-1)的最小公倍数和n的最大公约数)

当新增一个数n,我们记新增的乘子为m,m= n/(1…(n-1)的最小公倍数和n的最大公约数,初始化m =n,记1…(n-1)的最小公倍数为1 * 2 * 3 * 2 * 5 * 1 * …这种形式,其每一个乘子就是该最小公倍数的一个约数,用m依次除以这些约数,如果能够整除,则m = m/能整除的数,即为新增乘子
代码奉上:

#include <iostream>
using namespace std;
int main()
{
    int n;
    while (cin >> n)
    {
        //mult用来存储计算最小公倍数的时候每增加一位数字n,应该在1...n-1的最小公倍数的基础上乘以的数字
        //最多只能计算到100个连续整数的最小公倍数
        int mult[100] = {0};
        for (int i = 0; i < n; ++i)
        {
            //初始i+1为新增加的连续数字
            mult[i] = i + 1;
            //和前i-1位的乘子做整除,获取最终保留在当前位的乘子
            for (int j = 0; j < i; ++j)
            {
                if (mult[i] % mult[j] == 0)
                {
                    mult[i] /= mult[j];
                }
            }
        }
        int res[50] = {0};//记录结果的大数数组,倒存,低位在前,高位在后
        res[0] = 1;//初始化大数为1
        int bits = 1;//初始化大数位数为1,大数的位数就是bits位!!!
        for (int i = 0; i < n; ++i)//循环计算n个乘子的乘积
        {
            int carry = 0;//进位记录
            for (int j = 0; j < bits; ++j)//大数和int整数的乘运算
            {
                int temp = res[j] * mult[i] + carry;
                res[j] = temp % 10;
                carry = temp / 10;
            }
            while (carry)//确定本次循环所得结果在res中的占的位数,然后本轮循环结束,i增加1,
            {               //即开始下一个乘子与res的乘积
                res[bits] = carry % 10;
                carry /= 10;
                bits++;
            }
        }
        while (bits > 0)
        {
            cout << res[bits - 1];
            bits--;
        }
        cout << endl;
    }
    return 0;
}


在这里插入图片描述

关于最大公约数的一个很有技巧性的练习
题目描述:
从n个不同元素中,任取m(m<=n)个元素并组成一组,叫做从n个元素中取出m个元素的一个组合;则像这样取出所有组合的组合个数,
叫做从n个元素中取出m个元素的组合数,用符号c(m,n)表示。
现在你的任务是求出C(2n,1),C(2n,3),C(2n,5),...,C(2n,2n-1)的最大公约数

输入:
一个整数(1<n<=10000)
输出:
C(2n,1),C(2n,3),C(2n,5),...,C(2n,2n-1)的最大公约数

样例:
输入:
3
输出:
2

涉及到两个数学原理:
原理一:A和B(假设A>B)的最大公约数等于(A-B)和B的公约数。比如60和45的最大公约数为15,而45和15的最大公约数也是15,因此
也可以反推,即C和D的最大公约数就等于C和(C+D)的最大公约数;
原理二:C(n,0)+C(n,1)+C(n,2)+…+C(n,n)=2^n, 而且奇数项之和等于偶数项之和,都是2^n / 2,即2^(n-1)
题目中要求的这些数的最大公约数,等价于求C(2n,1)跟这几个数相加起来到的和Sum的最大公约数。有以上分析可知Sum=2^(2n-1),它是2的幂,C(2n,1)=2n,所以整个问题等价于求2n里能除尽多少个2,代码中的n&(-n)就是求这个

举个栗子:
10: 0000 1010

-10: 1111 0110

10&(-10)为 0010 = 2 所以10的因子中为2的有一个

#include <iostream>

int main()
{
	int n;
	std::cin >> n;
	int res = (2 * n) & (-2 * n);
	std::cout << res;
	return 0;
}
  • 4
    点赞
  • 17
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

笑着的程序员

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值