数字信号处理:通过matlab实现录制一段语音信号并绘制时域图形

一.主要功能:

(1)使用 matlab 录制一段语音信号并绘制时域图形;

(2)用 fft 函数及其它相关函数绘制该信号的频谱;

(3)设计滤波器, 分别提取该信号的高频、 低频分量, 并用多种函数将不同频率分量恢复为语音信号, 播放并与原始信号作比较。 分析语 音信号中高、 低频分量的特点。

二. 主要代码:

% 录制语音
duration = 5; % 录音时长(秒)
fs = 44100;   % 采样率(Hz)

recObj = audiorecorder(fs, 16, 1); % 创建录音对象
disp('开始录音...');
recordblocking(recObj, duration);   % 录制指定时长的语音 
disp('录音结束.');

% 获取录制的语音数据
data = getaudiodata(recObj); % 获取录制的音频数据

% 生成时间轴
time = (0:length(data)-1) / fs; % 根据采样率计算时间轴

% 绘制时域图像
figure;
subplot(2, 1, 1);
plot(time, data);
xlabel('时间 (秒)');
ylabel('幅度');
title('录制的语音信号时域图像');

% 计算语音信号的频谱
n = length(data);
frequencies = (0:n-1) * (fs / n); % 计算频率轴
transformed_data = fft(data) / n; % 执行FFT

% 只取频谱的前一半(单边频谱)
half_n = floor(n / 2);
transformed_data = transformed_data(1:half_n);
frequencies = frequencies(1:half_n);

% 绘制频谱图
subplot(2, 1, 2);
plot(frequencies, abs(transformed_data));
xlabel('频率 (Hz)');
ylabel('幅度');
title('录制的语音信号频谱图');

% 设计低通和高通滤波器
cutoff_low = 2000; % 低通滤波器截止频率(Hz)
cutoff_high = 4000; % 高通滤波器截止频率(Hz)

[b_low, a_low] = butter(6, cutoff_low/(fs/2), 'low'); % 6阶巴特沃斯低通滤波器设计
[b_high, a_high] = butter(6, cutoff_high/(fs/2), 'high'); % 6阶巴特沃斯高通滤波器设计

% 应用低通和高通滤波器
filtered_low = filter(b_low, a_low, data); % 低频分量
filtered_high = filter(b_high, a_high, data); % 高频分量

% 使用逆变换将低频和高频分量还原为语音信号
reconstructed_low = ifft(fftshift(fft(filtered_low))); % 还原低频分量
reconstructed_high = ifft(fftshift(fft(filtered_high))); % 还原高频分量

% 播放低频和高频分量重建的语音信号并与原始信号进行比较
sound(data, fs); % 播放原始语音信号
pause(duration + 1); % 等待播放完成

sound(real(reconstructed_low), fs); % 播放低频分量
pause(duration + 1); % 等待播放完成

sound(real(reconstructed_high), fs); % 播放高频分量
pause(duration + 1); % 等待播放完成

% 绘制重建信号的时域图像
figure;
subplot(2, 1, 1);
plot(time, real(reconstructed_low));
xlabel('时间 (秒)');
ylabel('幅度');
title('重建的低频分量时域图像');

subplot(2, 1, 2);
plot(time, real(reconstructed_high));
xlabel('时间 (秒)');
ylabel('幅度');
title('重建的高频分量时域图像');

三. 功能实现:

首先进行一段10秒钟的录音(可自行更改时间)

声音信号由系统麦克风进行采集(本实验采用周杰伦青花瓷副歌部分第一句)

采集后首先记录录制语音信号的时域图像和录制的信号频谱图

如下图所示:

随后对采集到的声音信号进行高低频分析,分析后得到重建的低频和高频分量时域图像

如下图所示:

后续测试了几组以高频为主和以低频为主的声音信号

高频(2500Hz以上逐步增高):

低频(600Hz以下):

课程实验,完成的可能并不是很理想,欢迎各位大佬指正。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

misakaaaaaa

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值