flink计算热门商品

在上一篇博客的基础上新建一个类HotItems,结构如下:
在这里插入图片描述
类中代码如下:

package myflink;/*
 * Licensed to the Apache Software Foundation (ASF) under one
 * or more contributor license agreements.  See the NOTICE file
 * distributed with this work for additional information
 * regarding copyright ownership.  The ASF licenses this file
 * to you under the Apache License, Version 2.0 (the
 * "License"); you may not use this file except in compliance
 * with the License.  You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

import org.apache.flink.api.common.functions.AggregateFunction;
import org.apache.flink.api.common.functions.FilterFunction;
import org.apache.flink.api.common.state.ListState;
import org.apache.flink.api.common.state.ListStateDescriptor;
import org.apache.flink.api.java.io.PojoCsvInputFormat;
import org.apache.flink.api.java.tuple.Tuple;
import org.apache.flink.api.java.tuple.Tuple1;
import org.apache.flink.api.java.typeutils.PojoTypeInfo;
import org.apache.flink.api.java.typeutils.TypeExtractor;
import org.apache.flink.configuration.Configuration;
import org.apache.flink.core.fs.Path;
import org.apache.flink.streaming.api.TimeCharacteristic;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.KeyedProcessFunction;
import org.apache.flink.streaming.api.functions.timestamps.AscendingTimestampExtractor;
import org.apache.flink.streaming.api.functions.windowing.WindowFunction;
import org.apache.flink.streaming.api.windowing.time.Time;
import org.apache.flink.streaming.api.windowing.windows.TimeWindow;
import org.apache.flink.util.Collector;

import java.io.File;
import java.net.URL;
import java.sql.Timestamp;
import java.util.ArrayList;
import java.util.Comparator;
import java.util.List;

public class HotItems {

    public static void main(String[] args) throws Exception {

        // 创建 execution environment
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        // 告诉系统按照 EventTime 处理
        env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime);
        // 为了打印到控制台的结果不乱序,我们配置全局的并发为1,改变并发对结果正确性没有影响
        env.setParallelism(1);

        // UserBehavior.csv 的本地文件路径, 在 resources 目录下
        URL fileUrl = HotItems.class.getClassLoader().getResource("UserBehavior.csv");
        Path filePath = Path.fromLocalFile(new File(fileUrl.toURI()));
        System.out.println(filePath);
        // 抽取 UserBehavior 的 TypeInformation,是一个 PojoTypeInfo
        PojoTypeInfo<UserBehavior> pojoType = (PojoTypeInfo<UserBehavior>) TypeExtractor.createTypeInfo(UserBehavior.class);
        // 由于 Java 反射抽取出的字段顺序是不确定的,需要显式指定下文件中字段的顺序
        String[] fieldOrder = new String[]{"userId", "itemId", "categoryId", "behavior", "timestamp"};
        // 创建 PojoCsvInputFormat
        PojoCsvInputFormat<UserBehavior> csvInput = new PojoCsvInputFormat<>(filePath, pojoType, fieldOrder);


        env
                // 创建数据源,得到 UserBehavior 类型的 DataStream
                .createInput(csvInput, pojoType)
                // 抽取出时间和生成 watermark
                .assignTimestampsAndWatermarks(new AscendingTimestampExtractor<UserBehavior>() {
                    @Override
                    public long extractAscendingTimestamp(UserBehavior userBehavior) {
                        // 原始数据单位秒,将其转成毫秒
                        return userBehavior.timestamp * 1000;
                    }
                })
                // 过滤出只有点击的数据
                .filter(new FilterFunction<UserBehavior>() {
                    @Override
                    public boolean filter(UserBehavior userBehavior) throws Exception {
                        // 过滤出只有点击的数据
                        return userBehavior.behavior.equals("pv");
                    }
                })
                .keyBy("itemId")
                .timeWindow(Time.minutes(60), Time.minutes(5))
                .aggregate(new CountAgg(), new WindowResultFunction())
                .keyBy("windowEnd")
                .process(new TopNHotItems(3))
                .print();

        env.execute("Hot Items Job");
    }

    /** 求某个窗口中前 N 名的热门点击商品,key 为窗口时间戳,输出为 TopN 的结果字符串 */
    public static class TopNHotItems extends KeyedProcessFunction<Tuple, ItemViewCount, String> {

        private final int topSize;

        public TopNHotItems(int topSize) {
            this.topSize = topSize;
        }

        // 用于存储商品与点击数的状态,待收齐同一个窗口的数据后,再触发 TopN 计算
        private ListState<ItemViewCount> itemState;

        @Override
        public void open(Configuration parameters) throws Exception {
            super.open(parameters);
            ListStateDescriptor<ItemViewCount> itemsStateDesc = new ListStateDescriptor<>(
                    "itemState-state",
                    ItemViewCount.class);
            itemState = getRuntimeContext().getListState(itemsStateDesc);
        }

        @Override
        public void processElement(
                ItemViewCount input,
                Context context,
                Collector<String> collector) throws Exception {

            // 每条数据都保存到状态中
            itemState.add(input);
            // 注册 windowEnd+1 的 EventTime Timer, 当触发时,说明收齐了属于windowEnd窗口的所有商品数据
            context.timerService().registerEventTimeTimer(input.windowEnd + 1);
        }

        @Override
        public void onTimer(
                long timestamp, OnTimerContext ctx, Collector<String> out) throws Exception {
            // 获取收到的所有商品点击量
            List<ItemViewCount> allItems = new ArrayList<>();
            for (ItemViewCount item : itemState.get()) {
                allItems.add(item);
            }
            // 提前清除状态中的数据,释放空间
            itemState.clear();
            // 按照点击量从大到小排序
            allItems.sort(new Comparator<ItemViewCount>() {
                @Override
                public int compare(ItemViewCount o1, ItemViewCount o2) {
                    return (int) (o2.viewCount - o1.viewCount);
                }
            });
            // 将排名信息格式化成 String, 便于打印
            StringBuilder result = new StringBuilder();
            result.append("====================================\n");
            result.append("时间: ").append(new Timestamp(timestamp-1)).append("\n");
            for (int i=0; i<allItems.size() && i < topSize; i++) {
                ItemViewCount currentItem = allItems.get(i);
                // No1:  商品ID=12224  浏览量=2413
                result.append("No").append(i).append(":")
                        .append("  商品ID=").append(currentItem.itemId)
                        .append("  浏览量=").append(currentItem.viewCount)
                        .append("\n");
            }
            result.append("====================================\n\n");

            // 控制输出频率,模拟实时滚动结果
            Thread.sleep(1000);

            out.collect(result.toString());
        }
    }

    /** 用于输出窗口的结果 */
    public static class WindowResultFunction implements WindowFunction<Long, ItemViewCount, Tuple, TimeWindow> {

        @Override
        public void apply(
                Tuple key,  // 窗口的主键,即 itemId
                TimeWindow window,  // 窗口
                Iterable<Long> aggregateResult, // 聚合函数的结果,即 count 值
                Collector<ItemViewCount> collector  // 输出类型为 ItemViewCount
        ) throws Exception {
            Long itemId = ((Tuple1<Long>) key).f0;
            Long count = aggregateResult.iterator().next();
            collector.collect(ItemViewCount.of(itemId, window.getEnd(), count));
        }
    }

    /** COUNT 统计的聚合函数实现,每出现一条记录加一 */
    public static class CountAgg implements AggregateFunction<UserBehavior, Long, Long> {

        @Override
        public Long createAccumulator() {
            return 0L;
        }

        @Override
        public Long add(UserBehavior userBehavior, Long acc) {
            return acc + 1;
        }

        @Override
        public Long getResult(Long acc) {
            return acc;
        }

        @Override
        public Long merge(Long acc1, Long acc2) {
            return acc1 + acc2;
        }
    }

    /** 商品点击量(窗口操作的输出类型) */
    public static class ItemViewCount {
        public long itemId;     // 商品ID
        public long windowEnd;  // 窗口结束时间戳
        public long viewCount;  // 商品的点击量

        public static ItemViewCount of(long itemId, long windowEnd, long viewCount) {
            ItemViewCount result = new ItemViewCount();
            result.itemId = itemId;
            result.windowEnd = windowEnd;
            result.viewCount = viewCount;
            return result;
        }
    }

    /** 用户行为数据结构 **/
    public static class UserBehavior {
        public long userId;         // 用户ID
        public long itemId;         // 商品ID
        public int categoryId;      // 商品类目ID
        public String behavior;     // 用户行为, 包括("pv", "buy", "cart", "fav")
        public long timestamp;      // 行为发生的时间戳,单位秒
    }
}



在resources中导入数据UserBehavior.csv,下载地址如下

链接:https://pan.baidu.com/s/1N3udzIGvv9TLwkdO3QuZlA 提取码:j7j6
导入需要的jar包,下载地址如下:
链接:https://pan.baidu.com/s/1rIRBxk4CqJMBIY52EFNhBg
提取码:aen6
导入过程如下:
在这里插入图片描述
在弹出的界面中选择下载的lib文件夹即可

点击运行程序,得到结果如下:
在这里插入图片描述
至此实验完成

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值