二叉树(BST)中序遍历的三种方法

介绍二叉树中序遍历的三种方法,分别是:递归(隐式的维护了一个栈)、基于栈的迭代、Morris中序遍历

首先:什么是二叉树中序遍历:

按照访问左子树——根节点——右子树的方式遍历这棵树,而在访问左子树或者右子树的时候我们按照同样的方式遍历,直到遍历完整棵树。

1.使用递归实现中序遍历:

二叉树的中序遍历的整个遍历过程本身就具有递归的性质,可以直接用递归函数来模拟这一过程。
定义 inorder(root) 表示当前遍历到root节点的答案,那么按照定义,我们只要递归调用 inorder(root.left) 来遍历root节点的左子树,然后将 left root节点的值加入答案,再递归调用inorder(root.right) 来遍历 root 节点的右子树即可,递归终止的条件为碰到空节点。

public List<Integer> inorderTraversal(TreeNode root) {
        List<Integer> list = new ArrayList<>();
        inorder(root,list);
        return list;
    }
    private void inorder(TreeNode root,List<Integer> list){
        //this is the end statement
        if(root==null){
            return;
        }
        inorder(root.left);
        list.add(root.val);
        inorder(root.right);
    }
}

复杂度分析

时间复杂度:O(n), n 为二叉树节点的个数。因为递归的遍历中每个节点只会被访问一次。
空间复杂度:O(n)。在最坏情况下,二叉树退化为链表,此时栈的深度为二叉树的长度n。

2.使用基于栈的迭代实现中序遍历

其实在第一种方法里,递归的模拟中序遍历会隐式的维护一个栈,那如果直接把这个栈显示的模拟出来,即可使用迭代的方法
这里使用双端队列Deque,目的是想在列表头和列表尾都实现增添和删除操作

public List<Integer> inorderTraversal(TreeNode root) {
        List<Integer> list = new ArrayList<>();
        Deque<TreeNode> deque = new LinkedList<>();
        while (root!=null||!deque.isEmpty()){//这两者都不成立的时候,直接返回,因为此时root跟为空
            //build a stack contains of all left element,for each element,next will deal with
            //their right element
            while (root!=null){
                deque.add(root);
                root=root.left;
            }
            root = deque.poll();//pull the leftest element
            list.add(root.val);//add it's value into ans list
            root=root.right;//search for it's right node

        }
        return list;
    }

复杂度分析

时间复杂度:O(n),同上,每个节点只会遍历一次
空间复杂度:O(n)。同上,在最坏情况下,二叉树退化为链表,此时栈的深度为二叉树的长度n。

3。使用Morris遍历算法实现中序遍历

Morris 遍历算法是另一种遍历二叉树的方法,它能将非递归的中序遍历空间复杂度降为 O(1)O(1)。

Morris 遍历算法整体步骤如下(假设当前遍历到的节点为 xx):

1.如果 x 无左孩子,先将 x 的值加入答案数组,再访问 x 的右孩子,即x=x.right。
2.如果 x 有左孩子,则找到 x 左子树上最右的节点(即左子树中序遍历的最后一个节点,x 在中序遍历中的前驱节点),我们记为 predecessor。根据 predecessor 的右孩子是否为空,进行如下操作。
(1).如果 predecessor 的右孩子为空,则将其右孩子指向 x,然后访问 x 的左孩子,x=x.left。
(2).如果 predecessor 的右孩子不为空,则此时其右孩子指向 x,说明我们已经遍历完 x 的左子树,我们将 predecessor 的右孩子置空,将 x 的值加入答案数组,然后访问 x 的右孩子,x=x.right。
重复上述操作,直至访问完整棵树。

本质上:假设当前遍历到的节点为 x,将 x 的左子树中最右边的节点的右孩子指向 x,这样在左子树遍历完成后我们通过这个指向走回了 x,且能通过这个指向知晓我们已经遍历完成了左子树,而不用再通过栈来维护,省去了栈的空间复杂度。

public List<Integer> inorderTraversal(TreeNode root) {
        List<Integer> list = new ArrayList<>();
        TreeNode predecessor = null;
        while(root!=null){
            // predecessor 节点就是当前 root 节点向左走一步,然后一直向右走至无法走为止
            if(root.left!=null){
                predecessor=root.left;
                while(predecessor.right!=null&&predecessor.right!=root){
                    predecessor=predecessor.right;
                }
                //如果Predecessor右边节点为空,那就把它指向根
                if(predecessor.right==null){
                    predecessor.right = root;
                    root = root.left;
                }
                //如果不为空,那就说明这个左树其实已经指向root了,已经遍历完 xx 的左子树
                else {
                    list.add(root.val);
                    predecessor.right =null;
                    root=root.right;
                }

            }
            //不然左为空,就直接把当前加入答案,然后查看右树
            else {
                list.add(root.val);
                root=root.right;
                }
            }
        return list;
        }

复杂度分析

时间复杂度:O(n),其中 n 为二叉搜索树的节点个数。Morris 遍历中每个节点会被访问两次,因此总时间复杂度为 O(n)。
空间复杂度:O(1)。因为并不需要维护一个深度为n的栈(在极坏情况下)

参考链接:https://leetcode-cn.com/problems/binary-tree-inorder-traversal/solution/er-cha-shu-de-zhong-xu-bian-li-by-leetcode-solutio/

<think>嗯,用户问的是二叉树的中序遍历序列是什么。首先,我需要回忆一下二叉树遍历的相关知识。中序遍历属于深度优先遍历的一种,那它的访问顺序应该是左子树、根节点、右子树。对吧?那我得确认一下具体的步骤,避免记错了。 接下来,我需要用简单明了的中文解释这个概念,让用户容易理解。可能需要举一个例子,比如一个具体的二叉树结构,然后展示中序遍历的过程。这样用户能更直观地看到遍历的步骤和结果。 然后,注意用户可能对递归和非递归的方法感兴趣。虽然用户没有明确问方法,但有时候介绍不同的实现方式会有帮助。不过根据问题,可能只需要解释遍历顺序,不需要深入算法实现。但可以稍微提一下常用的方法,比如递归或者使用栈,但重点还是放在遍历结果上。 另外,用户可能是在学习数据结构,或者准备面试,所以需要确保解释准确无误。中序遍历的应用场景可能也需要简单提及,比如在二叉搜索树中可以得到有序序列,这或许对用户有帮助。 还需要检查是否有常见的误解。比如,是否有人会混淆中序和前序、后序遍历的区别。可能需要对比一下,但根据问题,可能不需要展开,但至少明确中序的独特之处。 然后,构造一个例子。比如,假设有一个二叉树,根节点是A,左孩子是B,右孩子是C。B的左孩子是D,右孩子是E。这样的结构,中序遍历的顺序应该是D->B->E->A->C。需要确保例子正确,不会导致用户混淆。 最后,总结中序遍历的定义和特点,强调它的顺序和应用,确保用户理解关键点。同时,提醒用户如果有具体的二叉树结构需要分析,可以进一步提问。</think>二叉树的中序遍历序列是按照“左子树 → 根节点 → 右子树”的顺序访问节点得到的序列。以下是具体说明: --- ### 一、遍历规则(递归定义) 1. **递归遍历左子树** 2. **访问根节点** 3. **递归遍历右子树** --- ### 二、示例分析 假设二叉树结构如下: ``` 1 / \ 2 3 / \ / 4 5 6 ``` 按中序遍历步骤: 1. 遍历左子树(以2为根的子树) - 遍历2的左子树(节点4)→ **4** - 访问根节点 → **2** - 遍历2的右子树(节点5)→ **5** 2. 访问根节点 → **1** 3. 遍历右子树(以3为根的子树) - 遍历3的左子树(节点6)→ **6** - 访问根节点 → **3** 最终序列:$$4 \rightarrow 2 \rightarrow 5 \rightarrow 1 \rightarrow 6 \rightarrow 3$$ --- ### 三、关键特性 1. **有序性**:对二叉搜索树(BST)进行中序遍历,结果是一个**升序序列**。 2. **时间复杂度**:$O(n)$(需访问所有节点) 3. **空间复杂度**: - 递归实现:$O(h)$(h为树高度) - 迭代实现(栈):$O(h)$ --- ### 四、应用场景 1. 验证二叉搜索树的合法性 2. 输出BST的升序排列 3. 表达式树求值(如算术表达式的中缀形式) 如果有具体的二叉树结构需要分析,欢迎提供树形图或节点关系,我可以帮助推导中序序列!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值