(二)OpenCV特征提取与检测_16_级联分类器_人脸检测

Haar/LBP/HOG
①特征=w1*(RectSum1)+w2*(RectSum2)
②w1、w2是权重,可以是正或者负数
③对每个像素点,每个尺度上做计算

#include <opencv2/opencv.hpp>
#include <iostream>

using namespace cv;
using namespace std;

int main(int argc, char** argv)
{
	//加载opencv中预训练过的级联器.xml
	String cascadeFilePath = "../path/haarcascade_frontalface_alt.xml";
	//CascadeClassifier是opencv下objdetect模块中用来做目标检测的级联分类器的一个类,定义一个人脸检测级联器
	CascadeClassifier face_cascade;
	if (!face_cascade.load(cascadeFilePath))
	{
		printf("could not load haar data...\n");
		return -1;
	}

	Mat src, gray;
	src = imread("../path.jpg");
	//转为灰度图
	cvtColor(src, gray, COLOR_BGR2GRAY);
	//直方图均衡化
	equalizeHist(gray, gray);//因为积分图像特征基于矩形区域的差,如果直方图是不平衡的,这些差异就有可能由于整体光照或者测试图像的曝光而倾斜,所以这一步非常重要
	//namedWindow("src", WINDOW_AUTOSIZE);
	//imshow("src", src);

	vector<Rect> faces;
	//利用detectMultiScale搜索图像
	face_cascade.detectMultiScale(gray, //灰度图像
			faces, //vector<Rect>边界矩形
			1.1,//scaleFactor表示每次图像尺寸减小的比例
			3, //minNeighbors表示每一个目标至少要被检测到3次才算是真的目标(因为周围的像素和不同的窗口大小都可以检测到人脸)
			0, //flags 旧版本OpenCV 1.x级联工具
			Size(30, 30)); //目标的最小尺寸
	for (size_t i = 0; i < faces.size(); i++)
	{
		//画圆形
		Point center(faces[i].x + faces[i].width*0.5, faces[i].y + faces[i].height*0.5);
		ellipse(src, center, Size(faces[i].width*0.5, faces[i].height*0.5), 0, 0, 360, Scalar(255, 0, 255), 4, 8, 0);
		//画矩形
		//rectangle(src, faces[i], Scalar(255, 0, 255), 2, 8, 0);
	}

	namedWindow("face_dst", WINDOW_AUTOSIZE);
	imshow("face_dst", src);

	waitKey(0);
	return 0;
}

输出结果:
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值