Haar/LBP/HOG
①特征=w1*(RectSum1)+w2*(RectSum2)
②w1、w2是权重,可以是正或者负数
③对每个像素点,每个尺度上做计算
#include <opencv2/opencv.hpp>
#include <iostream>
using namespace cv;
using namespace std;
int main(int argc, char** argv)
{
//加载opencv中预训练过的级联器.xml
String cascadeFilePath = "../path/haarcascade_frontalface_alt.xml";
//CascadeClassifier是opencv下objdetect模块中用来做目标检测的级联分类器的一个类,定义一个人脸检测级联器
CascadeClassifier face_cascade;
if (!face_cascade.load(cascadeFilePath))
{
printf("could not load haar data...\n");
return -1;
}
Mat src, gray;
src = imread("../path.jpg");
//转为灰度图
cvtColor(src, gray, COLOR_BGR2GRAY);
//直方图均衡化
equalizeHist(gray, gray);//因为积分图像特征基于矩形区域的差,如果直方图是不平衡的,这些差异就有可能由于整体光照或者测试图像的曝光而倾斜,所以这一步非常重要
//namedWindow("src", WINDOW_AUTOSIZE);
//imshow("src", src);
vector<Rect> faces;
//利用detectMultiScale搜索图像
face_cascade.detectMultiScale(gray, //灰度图像
faces, //vector<Rect>边界矩形
1.1,//scaleFactor表示每次图像尺寸减小的比例
3, //minNeighbors表示每一个目标至少要被检测到3次才算是真的目标(因为周围的像素和不同的窗口大小都可以检测到人脸)
0, //flags 旧版本OpenCV 1.x级联工具
Size(30, 30)); //目标的最小尺寸
for (size_t i = 0; i < faces.size(); i++)
{
//画圆形
Point center(faces[i].x + faces[i].width*0.5, faces[i].y + faces[i].height*0.5);
ellipse(src, center, Size(faces[i].width*0.5, faces[i].height*0.5), 0, 0, 360, Scalar(255, 0, 255), 4, 8, 0);
//画矩形
//rectangle(src, faces[i], Scalar(255, 0, 255), 2, 8, 0);
}
namedWindow("face_dst", WINDOW_AUTOSIZE);
imshow("face_dst", src);
waitKey(0);
return 0;
}
输出结果: