ubuntu开机自启动ROS节点 1 编写ROS节点以及对应的launch文件如何编写ROS节点以及launch文件比较简单,网上也有很多教程,这里主要介绍ROS节点自启动,所以就默认大家已经编写好了相应的ROS节点和launch文件。这是我的talker.cpp节点文件,功能是输出hello world并计数。#include "ros/ros.h"#include "std_msgs/String.h"int main(int argc, char **argv){ ros::init(argc,argv,"tal
SLAM图优化三 为了更好地理解graph based slam的过程,本文以二维平面的激光SLAM为例子,先简单介绍如何根据传感器信息构建图,即图优化的前端(front-end)。然后再针对上篇博客的疑问,结合matlab程序,分析图优化的后端(back-end)。 对于二维平面的激光SLAM,数据包括两部分,odometry和laser range data,所以构图过程如下: 当机器人前进0.5m或者旋转超过0.5弧度时,将新的机器人位姿添加到图的顶点,并且记录相
csdn怎么快速转载别人的文章 1、首先要确认原文是允许被转载的。在文章开头或结尾处一般有版权声明;转载时要注明出处和作者。2、转载(1)打开要转载的文章(我用的360浏览器,大多数浏览器应该都可以),在空白处右键选择“审查元素”。(2)选则div元素。当鼠标放到每一行上时,在上边的内容区域会显示对应的选中内容,从开头开始挨个查看(一般就在开头部位),直到要转载的原文全部变成被选中的状态。(3)点击一下该行元素,使其成为被选中状态,然后右键,选择“复制元素”。(4)进入到自己的创作中心,选择发布文章。(5)在编辑器
SLAM图优化二 在上一部分中通过一个例子大致了解了graph based slam的优化过程。在本篇博客中将提升一个层次,对图优化的求解过程进行推导。由于博文关注的在图构建好以后,如何调整机器人位姿使误差最小。因此,本文主要涉及的是图优化的后端(back-end)。 我们已经知道图优化问题转变成了一个最小二乘问题。根据上篇博客最后一个例子,求机器人SLAM过程中最优轨迹可以表示成求解机器人位姿使得下面误差平方函数最小。 其中,表示图顶点的参数向量,如机器人位姿。表
SLAM图优化一 前言 SLAM问题的处理方法主要分为滤波和图优化两类。滤波的方法中常见的是扩展卡尔曼滤波、粒子滤波、信息滤波等,熟悉滤波思想的同学应该容易知道这类SLAM问题是递增的、实时的处理数据并矫正机器人位姿。比如基于粒子滤波的SLAM的处理思路是假设机器人知道当前时刻的位姿,利用编码器或者IMU之类的惯性导航又能够计算下一时刻的位姿,然而这类传感器有累计误差,所以再将每个粒子的激光传感器数据或者图像特征对比当前建立好的地图中的特征,挑选和地图特征匹配最好的粒子的位姿当做当前位姿,如此往复。当然在gmapping、
在VS2017中配置并使用MySql数据库 在VS2017中配置并使用MySql数据库详细说明请下载在VS2017中配置并使用MySql数据库详细说明https://download.csdn.net/download/weixin_46405486/186239300、 前言本文主要介绍如何在VS中配置MySql数据库,并对简单的数据处理(增删改查)进行详细的举例说明,附有程序代码和说明。1、运行环境说明:本文主要介绍如何在VS中配置MySql数据库,并对简单的数据处理(增删改查)进行详细的举例说明,附有程序代码和说明。
在Python中通过OpenCV自己训练分类器 进行特定物体实时识别 在Python中通过OpenCV自己训练分类器进行特定物体实时识别0、 前言OpenCV中提供了一些训练好的分类器供我们调用,从而实现物体识别和分类,如人脸检测、年龄和性别预测、猫脸检测、(汽车、船、猫、狗、沙发等)物体识别等。本篇文章的目的主要是介绍如何利用OpenCV自己训练分类器,实现特定物体的识别,这里以人手识别为例,对整个训练及识别测试过程进行说明,并附有程序代码。1、 运行环境操作系统:win10-64bit;集成开发环境(IDE):Visual Studio Code;Python
通过OpenCV对视频进行绿幕抠图 通过OpenCV对视频进行绿幕抠图效果代码1、打开视频素材2、保存视频路径及格式设置3、读取一帧视频4、寻找绿幕背景5、融合6、代码执行效果效果今天跟大家分享的是最近比较受大家喜欢的视频或图片的部分场景抠图替换,先不多说,先看效果:这是原视频,在场景中有个电视机被制成了绿幕。 胆小的猫 这是另一个需要添加的视频,我们的目的是将下边的“美女”视频添加到上边视频的绿幕电视机上。