图像的尺度、尺度空间等概念

图像的尺度空间描述了图像的模糊程度,而非大小,它通过高斯滤波和尺度变化实现多尺度表示。尺度空间的作用在于处理尺度不确定性,确保特征的尺度不变性。多尺度表示如图像金字塔虽有效,但缺乏最佳尺度选择和尺度不变性。最佳尺度选择通常依赖于感兴趣的图像特征。多尺度特征匹配能提高图像检测的全面性,避免固定尺度带来的遗漏。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.图像的尺度 
这里图像的尺度并非指图像的大小,而是指图像的模糊程度(σ) ,例如,人近距离看一个物体和远距离看一个物体模糊程度是不一样的,从近距离到远距离图像越来越模糊的过程,也是图像的尺度越来越大的过程。

2.尺度空间的作用 
1.用机器视觉系统分析未知场景时,计算机并不预先知道图像中物体的尺度。我们需要同时考虑图像在多尺度下的描述,获知感兴趣物体的最佳尺度。 
2.不同的尺度下都有同样的关键点,那么在不同的尺度的输入图像下就都可以检测出来关键点匹配,也就是尺度不变性。

图像的尺度空间表达指的就是图像在所有尺度下的描述。

3.多尺度表示 
1.金字塔多分辨率 
图像的金字塔化包括两个步骤,首先,图像经过一个低通滤波器进行平滑,然后,对这个平滑图像进行抽样(宽,高为原来的1、2)。 

 

è¿éåå¾çæè¿°


2.多尺度空间 
信号的尺度空间有一个重要的特性是通过低通滤波器后,在大尺度上不会引入虚假结构。 
两者都能有效地对图像进行多尺度表达,但金字塔多分辨率缺少坚实的理论基础,不能得到图像的最佳尺度,同样也不具有特征的尺度不变性。 
后者与前者的主要区别在与,多尺度空间在不同尺度(σ)上有相同的分辨率,即可以理解为,在不同的尺度上图像的大小是相同的。 
一幅图像的尺度空间 L(x, y, σ), 定义为原始图像 I(x,y) 与一个可变尺度的2维高斯函数G(x, y, σ)卷积运算。

即尺度空间形式表示为: 

 

è¿éåå¾çæè¿°


其中 

 

è¿éåå¾çæè¿°


高斯尺度空间具有的性质 
1.加权平均和有限孔径效应 
2.层叠平滑 
3.局部极值递减性 
4.尺度伸缩不变性

4.最佳尺度选择 
感兴趣图像结果在不同尺度上的响应是不同的,例如,同样一副含有人手的图像,当我们的感兴趣结构是人的手指,或者是人的手臂时,所需图像的最佳尺度是不同的。 

 

è¿éåå¾çæè¿°


在实际工作中,可以通过经验选择来确定最佳尺度。

5.多尺度特征匹配 
在提取图像的特征时,如果采取固定尺度的特征检测,就会得到偏向该尺寸的检测结果,而漏检很多其他尺度的特征。 
为了是不同尺度上图像中相同的特征被检测出,需要在图像的多个尺度上进行检测和匹配。
————————————————
版权声明:本文为CSDN博主「Lindsay.Lu丶」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/ljyljyok/article/details/87854453

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值