查看参数模型数据 .data-00000-of-00001 .index .meta

我的参数模型主要有三个文件:
snap-72722.data-00000-of-00001
snap-72722.index
snap-72722.meta

作用:
.data文件保存了当前参数名和值
.index文件保存了辅助索引信息
.meta文件保存了当前图结构.
当然还有一个checkpoint 文本文件,记录了模型文件的路径信息列表

1.输出节点名称

from tensorflow.python import pywrap_tensorflow

checkpoint_path = '/home/workstation/KPConv-xin/results/Log_2020-09-25_12-30-18/snapshots/snap-72722'
reader = pywrap_tensorflow.NewCheckpointReader(checkpoint_path)
var_to_shape_map = reader.get_variable_to_shape_map()
for key in var_to_shape_map:
    print("tensor_name:", key)

checkpoint_path 为路径信息,最后一个snap-72722注意不要加后缀。比如我的模型保存路径为/home/workstation/KPConv-xin/results/Log_2020-09-25_12-30-18/snapshots,在后面加上模型文件名的前缀!!!!!

2.查看某个节点的保存参数

import tensorflow as tf
from tensorflow.python.framework import graph_util
######from tensorflow.pyton.platform import gfile
def freeze_graph(input_checkpoint, output_graph):
    '''
    :param input_checkpoint:
    :param output_graph: PB模型保存路径
    :return:
    '''
    # checkpoint = tf.train.get_checkpoint_state(model_folder) #检查目录下ckpt文件状态是否可用
    # input_checkpoint = checkpoint.model_checkpoint_path #得ckpt文件路径

    # 指定输出的节点名称,该节点名称必须是原模型中存在的节点
    #output_node_names = [n.name for n in tf.get_default_graph().as_graph_def().node]

    output_node_names ='KernelPointNetwork/layer_0/resnetb_strided_2/conv3/batch_normalization/moving_variance'
    saver = tf.train.import_meta_graph(input_checkpoint + '.meta', clear_devices=True)
    graph = tf.get_default_graph()  # 获得默认的图
    input_graph_def = graph.as_graph_def()  # 返回一个序列化的图代表当前的图

    with tf.Session() as sess:
        saver.restore(sess, input_checkpoint)  # 恢复图并得到数据
        output_graph_def = graph_util.convert_variables_to_constants(  # 模型持久化,将变量值固定
            sess=sess,
            input_graph_def=input_graph_def,  # 等于:sess.graph_def
            output_node_names=output_node_names.split(","))  # 如果有多个输出节点,以逗号隔开

        with tf.gfile.GFile(output_graph, "wb") as f:  # 保存模型
           f.write(output_graph_def.SerializeToString())  # 序列化输出
        print("%d ops in the final graph." % len(output_graph_def.node))  # 得到当前图有几个操作节点
        print(output_graph_def.node)

        # for op in graph.get_operations():
        #     print(op.name, op.values())
input_checkpoint='/home/workstation/KPConv-xin/results/Log_2020-09-25_12-30-18/snapshots/snap-72722'
output_graph='/home/workstation/KPConv-xin/results/cc.pb'
freeze_graph(input_checkpoint,output_graph)

output_node_names为上一个程序输出的某个节点的名称,根据自己想查看的节点进行修改
input_checkpoint同上述的 checkpoint_path
output_graph为PB模型保存路径,这里只是保存你填入节点的数据,并不是all

3.查看所有全部节点的保存参数

import tensorflow as tf
from tensorflow.python.framework import graph_util
######from tensorflow.pyton.platform import gfile
def freeze_graph(input_checkpoint, output_graph):
    '''
    :param input_checkpoint:
    :param output_graph: PB模型保存路径
    :return:
    '''
    # checkpoint = tf.train.get_checkpoint_state(model_folder) #检查目录下ckpt文件状态是否可用
    # input_checkpoint = checkpoint.model_checkpoint_path #得ckpt文件路径

    # 指定输出的节点名称,该节点名称必须是原模型中存在的节点
    #output_node_names = [n.name for n in tf.get_default_graph().as_graph_def().node]
    #print('tf.get_default_graph().as_graph_def().node',tf.get_default_graph().as_graph_def().node)
    reader = pywrap_tensorflow.NewCheckpointReader(input_checkpoint)
    var_to_shape_map = reader.get_variable_to_shape_map()
    output_node_names=''
    for key in var_to_shape_map:
        output_node_names=output_node_names+','+key
    output_node_names=output_node_names.strip(',')
    saver = tf.train.import_meta_graph(input_checkpoint + '.meta', clear_devices=True)
    graph = tf.get_default_graph()  # 获得默认的图
    input_graph_def = graph.as_graph_def()  # 返回一个序列化的图代表当前的图

    with tf.Session() as sess:
        saver.restore(sess, input_checkpoint)  # 恢复图并得到数据
        output_graph_def = graph_util.convert_variables_to_constants(  # 模型持久化,将变量值固定
            sess=sess,
            input_graph_def=input_graph_def,  # 等于:sess.graph_def
            output_node_names=output_node_names.split(","))  # 如果有多个输出节点,以逗号隔开

        with tf.gfile.GFile(output_graph, "wb") as f:  # 保存模型
           f.write(output_graph_def.SerializeToString())  # 序列化输出
        print("%d ops in the final graph." % len(output_graph_def.node))  # 得到当前图有几个操作节点
        print(output_graph_def.node)

        # for op in graph.get_operations():
        #     print(op.name, op.values())
input_checkpoint='/home/workstation/KPConv-xin/results/Log_2020-09-25_12-30-18/snapshots/snap-72722'
output_graph='/home/workstation/KPConv-xin/results/cc.pb'
freeze_graph(input_checkpoint,output_graph)
  • 12
    点赞
  • 53
    收藏
    觉得还不错? 一键收藏
  • 7
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值