机器学习——python机器学习第2版笔记

本书全面介绍了机器学习的基础和进阶知识,包括数据预处理、分类算法、scikit-learn库、特征选择、降维技术、模型评估与调优、集成学习、文本分析和情感分析、回归分析、聚类分析,以及深度学习的使用。内容覆盖了从理论到实践,使用Python和TensorFlow实现,适用于希望提升机器学习能力的读者。
摘要由CSDN通过智能技术生成

python机器学习第二版笔记


本文简要介绍了python机器学习第二版前11章的笔记,因为12-16章,主要介绍的是TensorFlow,(我们不使用者这个包)以及深度学习的内容。下一站开始深度学习。

1 赋予计算机从数据中学习的能力

1.1 构建把数据转换成知识的智能

1.2 三种不同类型的机器学习

本节将讨论有监督、无监督和强化三种不同类型的机器学习,分析它们之间的根本差别,并用概念性的例子开发一个可以解决实际问题的应用:
在这里插入图片描述
用有监督学习预测未来
用强化学习解决交互问题
用无监督学习发现隐藏结构

1.3 基本术语与符号

1.4 构建机器学习系统的路线图

在这里插入图片描述

1.5 用python进行机学习

安装包:NumPy 、SciPy 、scikit-learn 、Matplotlib 、pandas
安装anaconda

2 训练简单的机器学习分类算法

2.1 人工神经元——机器学习早期历史一瞥

人工神经元的正式定义
感知器学习规则
感知器的一般概念图:
在这里插入图片描述

2.2 在python中实现感知器学习

面向对象的感知器API
在鸢尾花数据集上训练感知器模型

2.3 自适应神经元和学习收敛

1.梯度下降为最小代价函数
2.用Python实现Adaline
在这里插入图片描述

3.通过调整特征大小改善梯度下降
标准化:
x j = ( x j − u j ) / d e t a j x_j=(x_j-u_j)/deta_j xj=(xj

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值