各种环境的安装和配置
文章平均质量分 75
心之所向521
锲而舍之,朽木不折;锲而不舍,金石可镂!
敬畏代码!
展开
-
安装完tensorflow后还提示“no moudle named tensorflow”
问题:一般当成功安装好tensorflow后,会有如下提示:但是,当你进入python界面对tensorflow版本进行验证时还会出现:“no moudle named tensorflow”,这是哪里的问题呢?明明已经安装好了?原因:1.tensorflow版本和cuda版本不匹配!———大部分都是这个原因官方匹配链接:在 Windows 环境中从源代码构建 | TensorFlow (google.cn)具体怎么安装cuda和cudnn,以及他们之间与linux的...原创 2022-04-07 11:16:06 · 4434 阅读 · 3 评论 -
解决有多个版本cuda时如何灵活切换的问题
如果有多个版本的cuda怎么办呢?怎么切换呢?此种安装方式,是将/usr/local的cuda文件链接到了对应cuda版本的根目录。输入以下命令可以查看当前cuda文件的链接情况:cd /usr/local/stat cuda随后会输出以下信息:在/usr/local下,我们可以安装多个版本的cuda,这里我列出我电脑内的cuda版本,有cuda9.0、cuda10.0等多个版本命令行输入以下命令,断开cuda文件与cuda-10.1的符号链接:sudo rm -rf cu原创 2022-04-07 11:02:00 · 1436 阅读 · 1 评论 -
linux常见命令---深度学习炼丹炉必备---更新中
目录1.修改环境变量2.查看当前conda环境3.如果执行conda activate ***出现问题时需要初始化shell4.查看当前cuda版本*5.有了ubuntu系统安装基本的工具6.linux下安装显卡驱动7.linux下安装cuda如果有多个版本的cuda怎么办呢?8.linux下安装cudnn9.创建conda环境10.查看本机IP地址1.修改环境变量vim ~/.bashrc保存环境变量source ~/.bashrc如果在原创 2022-01-20 10:55:59 · 2939 阅读 · 6 评论 -
深度学习环境配置---显卡驱动、pytorch、cuda和cudnn之间的配置关系
目录1. 显卡驱动2.cuda3.cudnn4.pytorch简单的关系如下图:1. 显卡驱动显卡驱动是电脑上服务于显卡的驱动程序,有了显卡驱动显卡的功能才能被最大化利用!显卡驱动的作用就是用来驱动显卡的,这是电脑硬件中所对应的一个软件。通过添加驱动程序计算机中的硬件就能正常的工作,当然不同的硬件使用的驱动程序也不一样。显卡对应的就是显卡驱动。显卡在电脑中提供图形的重要显示部分,直接关系到电脑的图形显示,而且显卡还可以提供更清晰的画质,给用户带来视频体验。显卡驱动的作用就原创 2022-01-14 10:27:52 · 5897 阅读 · 0 评论 -
cuda、torch、torchvision对应版本以及安装
查找torch与torchvision对应版本匹配情况如下:1.在线下载:在pytorch官网选择相应的历史版本,使用conda或者pip安装,使用官网的镜像下载很慢,建议使用其他的镜像源,这里我使用的是阿里的镜像速度还不错。pip install torch==1.7.1 torchvision==0.8.2 torchaudio==0.7.2 -i https://mirrors.aliyun.com/pypi/simple/2.离线下载在tor.原创 2021-12-02 23:08:59 · 44922 阅读 · 0 评论 -
cuda nvidia等驱动的安装和卸载
查看cuda 版本cat /usr/local/cuda/version.txt查看cudnn 版本cat /usr/local/cuda/include/cudnn.h | grep CUDNN_MAJOR -A 2查看显卡驱动版本cat /proc/driver/nvidia/version或输入nvidia-smicuda安装 驱动安装完成后,下载cuda安装包(CUDA Toolkit Archive | NVIDIA Developer) sudo原创 2021-12-02 23:06:55 · 4816 阅读 · 0 评论