JavaScript 算法与数据结构

数据结构

数据结构是在计算机中 组织和存储数 据的一种特殊方式, 它可以高效地 访问和修改 数据。更确切地说, 数据结构是数据值的集合, 它们之间的关系、函数或操作可以应用于数据。

B - 初学者, A - 进阶

  • B 链表

  • B 双向链表

  • B 队列

  • B 栈

  • B 哈希表

  • B 堆

  • B 优先队列

  • A 字典树

  • A 树

    A 二叉查找树
    
    A AVL 树
    
    A 红黑树
    
    A 线段树 - 使用 最小/最大/总和 范围查询示例
    
    A 树状数组 (二叉索引树)
    
  • A 图 (有向图与无向图)

  • A 并查集

  • A 布隆过滤器

算法

算法是如何解决一类问题的明确规范。 算法是一组精确定义操作序列的规则。

算法主题

数学

  • B Bit 操控 - set/get/update/clear 位, 乘以/除以 二进制位, 变负 等.

  • B 阶乘

  • B 斐波那契数

  • B 素数检测 (排除法)

  • B 欧几里得算法 - 计算最大公约数 (GCD)

  • B 最小公倍数 (LCM)

  • B 素数筛 - 查找所有素数达到任何给定限制

    -B 判断2次方数 - 检查数字是否为2的幂 (原生和按位算法)

  • B 杨辉三角形

  • A 整数拆分

  • A 割圆术 - 基于N-gons的近似π计算

  • 集合

     B 笛卡尔积 - 多集合结果
     
     A 幂集 - 该集合的所有子集
     
     A 排列 (有/无重复)
     
     A 组合 (有/无重复)
     
     A 洗牌算法 - 随机置换有限序列
     
     A 最长公共子序列 (LCS)
     
     A 最长递增子序列
     
     A 最短公共父序列 (SCS)
     
     A 背包问题 - "0/1" and "Unbound" ones
     
     A 最大子数列问题 - BF算法 与 动态规划
     
     A 组合求和 - 查找形成特定总和的所有组合
    
  • 字符串

     A 莱温斯坦距离 - 两个序列之间的最小编辑距离
     
     B 汉明距离 - 符号不同的位置数
     
     A 克努斯-莫里斯-普拉特算法 - 子串搜索
     
     A 字符串快速查找 - 子串搜索
     
     A 最长公共子串
     
     A 正则表达式匹配
    
  • 搜索

     B 线性搜索
     
     B 跳转搜索 (或块搜索) - 搜索排序数组
     
     B 二分查找
     
     B 插值搜索 - 搜索均匀分布的排序数组
    
  • 排序

     B 冒泡排序
     
     B 选择排序
     
     B 插入排序
     
     B 堆排序
     
     B 归并排序
     
     B 快速排序
     
     B 希尔排序
     
     B 计数排序
     
     B 基数排序
    
  •  B 深度优先搜索 (DFS)
     
     B 广度优先搜索 (BFS)
    
  •  B 深度优先搜索 (DFS)
     
     B 广度优先搜索 (BFS)
     
     A 戴克斯特拉算法 - 找到图中所有顶点的最短路径
     
     A 贝尔曼-福特算法 - 找到图中所有顶点的最短路径
     
     A 弗洛伊德算法 - 找到所有顶点对 之间的最短路径
     
     A 判圈算法 - 对于有向图和无向图 (基于DFS和不相交集的版本)
     
     A 普林演算法 - 寻找加权无向图的最小生成树 (MST)
     
     B 克鲁斯克尔演算法 - 寻找加权无向图的最小生成树 (MST)
     
     A 拓扑排序 - DFS 方法
     
     A 关节点 - Tarjan算法 (基于DFS)
     
     A 桥 - 基于DFS的算法
     
     A 欧拉回径与一笔画问题 - Fleury的算法 - 一次访问每个边
     
     A 哈密顿图 - 恰好访问每个顶点一次
     
     A 强连通分量 - Kosaraju算法
     
     A 旅行推销员问题 - 尽可能以最短的路线访问每个城市并返回原始城市
    
  • 未分类

     B 汉诺塔
     
     B 旋转矩阵 - 原地算法
     
     B 跳跃 游戏 - 回溯, 动态编程 (自上而下+自下而上) 和贪婪的例子
     
     B 独特(唯一) 路径 - 回溯, 动态编程和基于Pascal三角形的例子
     
     B 雨水收集 - 诱捕雨水问题 (动态编程和暴力版本)
     
     A 八皇后问题
     
     A 骑士巡逻
    

算法范式

算法范式是基于类的设计的通用方法或方法的算法。 这是一个比算法概念更高的抽象, 就像一个 算法是比计算机程序更高的抽象。

  • BF算法 - 查找/搜索 所有可能性并选择最佳解决方案

  • B 线性搜索

  • B 雨水收集 - 诱导雨水问题

  • A 最大子数列

  • A 旅行推销员问题 - 尽可能以最短的路线访问每个城市并返回原始城市

  • 贪心法 - 在当前选择最佳选项, 不考虑以后情况

    B 跳跃游戏
    
    A 背包问题
    
    A 戴克斯特拉算法 - 找到所有图顶点的最短路径
    
    A 普里姆算法 - 寻找加权无向图的最小生成树 (MST)
    
    A 克鲁斯卡尔算法 - 寻找加权无向图的最小生成树 (MST)
    
  • 分治法 - 将问题分成较小的部分, 然后解决这些部分

     B 二分查找
     
     B 汉诺塔
     
     B 杨辉三角形
     
     B 欧几里得算法 - 计算最大公约数 (GCD)
     
     B 跳跃游戏
     
     B 归并排序
     
     B 快速排序
     
     B 树深度优先搜索 (DFS)
     
     B 图深度优先搜索 (DFS)
     
     A 排列 (有/无重复)
     
     A 组合 (有/无重复)
    
  • 动态编程 - 使用以前找到的子解决方案构建解决方案

     B 斐波那契数
     
     B 跳跃游戏
     
     B 独特路径
     
     B 雨水收集 - 疏导雨水问题
     
     A 莱温斯坦距离 - 两个序列之间的最小编辑距离
     
     A 最长公共子序列 (LCS)
     
     A 最长公共子串
     
     A 最长递增子序列
     
     A 最短公共子序列
     
     A 0-1背包问题
     
     A 整数拆分
     
     A 最大子数列
     
     A 弗洛伊德算法 - 找到所有顶点对之间的最短路径
     
     A 贝尔曼-福特算法 - 找到所有图顶点的最短路径
    
  • 回溯法 - 类似于 BF算法 试图产生所有可能的解决方案, 但每次生成解决方案测试如果它满足所有条件, 那么只有继续生成后续解决方案。 否则回溯并继续寻找不同路径的解决方案。

     B 跳跃游戏
     
     B 独特路径
     
     A 哈密顿图 - 恰好访问每个顶点一次
     
     A 八皇后问题
     
     A 骑士巡逻
     
     A 组合求和 - 从规定的总和中找出所有的组合
    

Branch & Bound

如何使用本仓库

安装依赖

npm install

执行测试

npm test

按照名称执行测试

npm test -- 'LinkedList'

Playground

你可以在./src/playground/playground.js文件中操作数据结构与算法, 并在./src/playground/test/playground.test.js中编写测试。

然后, 只需运行以下命令来测试你的 Playground 是否按无误:

npm test -- 'playground'

感谢大家的查阅,可以发送建议给我谢谢

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值