数仓理论简述
1 表的分类
1.1 实体表
实体表,一般是指一个现实存在的业务对象,比如用户,商品,商家,销售员等等。
1.2 维度表
维度表,一般是指对应一些业务状态,编号的解释表。也可以称之为码表。比如地区表,订单状态,支付方式,审批状态,商品分类等等。
1.3 事务型事实表
事务型事实表,一般指随着业务发生不断产生的数据。特点是一旦发生不会再变化。一般比如,交易流水,操作日志,出库入库记录等等。
1.4 周期型事实表
周期型事实表,一般指随着业务发生不断产生的数据。与事务型不同的是,数据会随着业务周期性的推进而变化。比如订单,其中订单状态会周期性变化。再比如,请假、贷款申请,随着批复状态在周期性变化。
2 同步策略
数据同步策略的类型包括:全量表、增量表、新增及变化表、拉链表
全量表:存储完整的数据。
增量表:存储新增加的数据。
新增及变化表:存储新增加的数据和变化的数据。
拉链表:对新增及变化表做定期合并。
2.1 实体表同步策略
实体表:比如用户,商品,商家,销售员等
实体表数据量比较小:通常可以做每日全量,就是每天存一份完整数据。即每日全量。
2.2 维度表同步策略
维度表:比如订单状态,审批状态,商品分类
维度表数据量比较小:通常可以做每日全量,就是每天存一份完整数据。即每日全量。
说明:
1)针对可能会有变化的状态数据可以存储每日全量。
2)没变化的客观世界的维度(如性别,地区,民族,政治成分,鞋子尺码)可以只存一份固定值。
2.3 事务型事实表同步策略
事务型事实表:比如,交易流水,操作日志,出库入库记录等。
因为数据不会变化,而且数据量巨大,所以每天只同步新增数据即可,所以可以做成每日增量表,即每日创建一个分区存储。
2.4 周期型事实表同步策略
周期型事实表:比如,订单、请假、贷款申请等
这类表从数据量的角度,存每日全量的话,数据量太大,冗余也太大。如果用每日增量的话无法反应数据变化。
每日新增及变化量,包括了当日的新增和修改。一般来说这个表,足够计算大部分当日数据的。但是这种依然无法解决能够得到某一个历史时间点(时间切片)的切片数据。
所以要用利用每日新增和变化表,制作一张拉链表,以方便的取到某个时间切片的快照数据。所以我们需要得到每日新增及变化量。
3 范式理论
3.1 范式概念
关系型数据库设计时,遵照一定的规范要求,目的在于降低数据的冗余性,目前业界范式有:第一范式(1NF)、第二范式(2NF)、第三范式(3NF)、巴斯-科德范式(BCNF)、第四范式(4NF)、第五范式(5NF)。
范式可以理解为一张数据表的表结构,符合的设计标准的级别。
使用范式的根本目的是:
1)减少数据冗余,尽量让每个数据只出现一次。
2)保证数据一致性
缺点是获取数据时,需要通过Join拼接出最后的数据。
3.2 函数依赖
1、完全函数依赖
通过AB能得出C,但是A或者B单独得不出C,那么说C完全依赖于AB。
比如能通过学号和课程推出分数,但是单独用学号推断不出分数,那么可以说:分数完全依赖于(学号,课程)
2、部分依赖
通过AB能得出C,通过A也能得出C,或者通过B也能得出C,那么说C部分依赖于AB。
3、传递函数依赖
通过A得到B,通过B得到C,但是C得不到A,那么说C传递依赖于A。
3.3 三范式区分
1、第一范式
第一范式1NF核心原则就是:属性不可切割。
2、第二范式
第二范式2NF核心原则:不能存在部分函数依赖。
3、第三范式
第三范式3NF核心原则:不能存在传递函数依赖。
4 关系建模与维度建模
1、关系模型
关系模型主要应用与OLTP系统中,为了保证数据的一致性以及避免冗余,所以大部分业务系统的表都是遵循第三范式的。
2、维度模型
维度模型主用应用于OLAP系统中,因为关系模型虽然冗余少,但是在大规模数据,跨表分析统计查询过程中,会造成多表关联,这会大大降低执行效率。所以把相关各种表整理成两种:事实表和维度表两种。所有维度表围绕着事实表进行解释。
5 常用模型
在维度建模的基础上又分为三种模型:星型模型、雪花模型、星座模型。
1、星型模型
雪花模型与星型模型的区别主要在于维度的层级,标准的星型模型维度只有一层,而雪花模型可能会涉及多级。
2、雪花模型
雪花模型,比较靠近3NF,但是无法完全遵守,因为遵循3NF的性能成本太高。
3、星座模型
星座模型与前两种情况的区别是事实表的数量,星座模型是基于多个事实表。
基本上是很多数据仓库的常态,因为很多数据仓库都是多个事实表的。所以星座不星座只反映是否有多个事实表,它们之间是否共享一些维度表。
所以星座模型并不和前两个模型冲突。
4、模型的选择
首先就是星座不星座这个只跟数据和需求有关系,跟设计没关系,不用选择。
星型还是雪花,取决于性能优先,还是灵活更优先。
目前企业实际开发中,不会绝对选择一种,根据情况灵活组合,甚至并存(一层维度和多层维度都保存)。但是整体来看,更倾向于维度更少的星型模型。尤其是Hadoop体系,减少Join就是减少Shuffle,性能差距很大。(关系型数据可以依靠强大的主键索引)