给你一个字符串 s 和一个字符规律 p,请你来实现一个支持 ‘.’ 和 ‘*’ 的正则表达式匹配。
‘.’ 匹配任意单个字符
‘*’ 匹配零个或多个前面的那一个元素
所谓匹配,是要涵盖 整个 字符串 s的,而不是部分字符串。
说明:
s 可能为空,且只包含从 a-z 的小写字母。
p 可能为空,且只包含从 a-z 的小写字母,以及字符 . 和 *。
示例 1:
输入:
s = “aa”
p = “a”
输出: false
解释: “a” 无法匹配 “aa” 整个字符串。
示例 2:
输入:
s = “aa”
p = “a*”
输出: true
解释: 因为 ‘*’ 代表可以匹配零个或多个前面的那一个元素, 在这里前面的元素就是 ‘a’。因此,字符串 “aa” 可被视为 ‘a’ 重复了一次。
示例 3:
输入:
s = “ab”
p = “."
输出: true
解释: ".” 表示可匹配零个或多个(’*’)任意字符(’.’)。
示例 4:
输入:
s = “aab”
p = “cab”
输出: true
解释: 因为 ‘*’ 表示零个或多个,这里 ‘c’ 为 0 个, ‘a’ 被重复一次。因此可以匹配字符串 “aab”。
示例 5:
输入:
s = “mississippi”
p = “misisp*.”
输出: false
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/regular-expression-matching
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
class Solution:
def isMatch(self, s: str, p: str) -> bool:
if not p :return not s
test=( s) and ( p[0] in {s[0],'.'})
if len(p)>=2and p[1]=='*':
return ( self.isMatch(s,p[2:]))or (test and self.isMatch(s[1:],p) )
else:
return test and self.isMatch(s[1:],p[1:])
class Solution:
def isMatch(self, s: str, p: str) -> bool:
memo=dict()
def dp(i,j):
if (i,j) in memo:return memo[(i,j)]
if j==len(p) :return i==len(s)
test=(i<len(s))and (p[j]in {s[i],'.'})
if j<=len(p)-2 and p[j+1]=='*':
ans= dp(i,j+2)or (test and dp(i+1,j))
else :
ans=test and dp(i+1,j+1)
memo[(i,j)]=ans
return ans
return dp(0,0)
class Solution:
def isMatch(self, s, p):
if not p: return not s
# s 和 p 首位置 匹配, 我们只需比较s的下一位和p是否匹配
if s and len(p) >= 2 and (s[0] == p[0] or p[0] == ".") and p[1] == "*" and (
self.isMatch(s[1:], p) ):
return True
# s 和 p 首位置不匹配, 但是p的下个位置是* 所以可以跳到p[2:]
elif s and len(p) >= 2 and s[0] != p[0] and p[1] == "*" and self.isMatch(s, p[2:]):
return True
# s 和 p 首位置匹配, 接着匹配下一个
elif s and (s[0] == p[0] or p[0] == ".") and self.isMatch(s[1:], p[1:]):
return True
# 防止s为空
elif len(p) >= 2 and p[1] == "*" and self.isMatch(s, p[2:]):
return True
return False
1.p[j] == s[i]:dp[i][j] = dp[i-1][j-1]
2.p[j] == ".":dp[i][j] = dp[i-1][j-1]
3.p[j] =="*":
3.1 p[j-1] != s[i]:dp[i][j] = dp[i][j-2]
3.2 p[j-1] == s[i] or p[j-1] == ".":
dp[i][j] = dp[i-1][j] // 多个字符匹配
or dp[i][j] = dp[i][j-2] // 没有匹配
class Solution:
def isMatch(self, s: str, p: str) -> bool:
#if not s or not p:
#return False
s_len = len(s)
p_len = len(p)
dp = [[False] * (p_len + 1) for _ in range(s_len + 1)]
#print(dp)
dp[0][0] = True
for i in range(p_len):
if p[i] == "*" and dp[0][i - 1]:
dp[0][i + 1] = True
#print(dp)
for i in range(s_len):
for j in range(p_len):
if p[j] == s[i] or p[j] == ".":
dp[i + 1][j + 1] = dp[i][j]
elif p[j] == "*":
if p[j - 1] != s[i]:
dp[i + 1][j + 1] = dp[i + 1][j - 1]
if p[j-1] == s[i] or p[j-1] == ".":
dp[i+1][j+1] = (dp[i][j+1]or dp[i+1][j-1])
#print(dp)
return dp[-1][-1]
这个题的关键问题就是’*'号的处理问题,因为其可以匹配零个或者多个前面的内一个元素,所以当我们遍历遇到 '*'时我们不知道他是匹配了零个还是多个元素,或者说当他匹配多个元素的时候,我们不确定他是具体匹配了几个元素。
而我们解决的办法就是类似的通过当我们找到*时,先分成两种情况即其匹配零个元素或者多个元素,而对于多个元素的处理我们利用类似递归的思想或者说动态规划,一次我们只移动s的指针一次,这样呢当s中没有匹配的元素,或者说“ * ”匹配的元素数目到了之后,其下一次递归,或者遍历就是*对应零个元素了这样就解决了*的问题。
但说到这里我却发现了一个问题,就是这种解决的方法把*只匹配一个元素的情况也考虑了进来也判断其为正确的情况,但在测试中上述的做法通过了测试,但其确实也是将只匹配一个元素的情况考虑了进来,希望路过的大神能解答一下这个问题,嘻嘻。