选择排序
选择排序,其实就是冒泡排序的一种别称,其工作原理就是:一个有n个元素的列表,经过n-1轮的排序后就是一个有序的列表,每轮选出该轮中最大/小的数填充到新的列表中,因为前n-1个已经排好序,自然而然最后一个已经好了。就好像10个高矮不一的人要排成从矮到低的列,我们就可以,第一次选出最矮的站在新的一列的第一个,然后再次选择剩下的人中最矮的接着新队列的最矮的人后面。这样,经过9轮排序后,还剩下一个最高的,肯定站在最后面,这样就排好序了。其中,n个人,每次排序最少比较0次(最后一次),最多比较n-1(第一次),其中一共需要比较n-1次(最后一次一个人,直接就好了),所以说时间复杂度为O(n ^ 2)。
代码如下:
def one_sort(l):
largest = l[0]
largest_index = 0
for i in range(len(l)):
if l[i] > largest:
largest, largest_index = l[i], i
return largest_index
def all_sort(l):
new_list = []
for i in range(len(l)):
largest_index = one_sort(l)
new_list.append(l.pop(largest_index))
return new_list
def main():
l = list(range(100))
random.shuffle(l)
start_time = time.time()
print(all_sort(l))
end_time = time.time()
print(end_time - start_time)
if __name__ == '__main__':
main()
输出:
[99, 98, 97, 96, 95, 94, 93, 92, 91, 90, 89, 88, 87, 86, 85, 84, 83, 82, 81, 80, 79, 78, 77, 76, 75, 74, 73, 72, 71, 70, 69, 68, 67, 66, 65, 64, 63, 62, 61, 60, 59, 58, 57, 56, 55, 54, 53, 52, 51, 50, 49, 48, 47, 46, 45, 44, 43, 42, 41, 40, 39, 38, 37, 36, 35, 34, 33, 32, 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0]
0.0009996891021728516
有更好的方式请评论区告知一下,谢谢!!!