AcWing 1126. 最小花费

迪杰特拉的变形
思路:

目标函数: 100 = A ∗ Π w i 100 = A * \Pi w_i 100=AΠwi

要使得 A 最小,则 Π w i \Pi w_i Πwi 需最大。
max ⁡ ( Π w i ) ⇔ max ⁡ ( log ⁡ ( Π w i ) ) ⇔ max ⁡ ( ∑ log ⁡ ( w i ) ) ,其中 w i ∈ ( 0 , 1 ) \max(\Pi w_i) \\ \Leftrightarrow \max(\log(\Pi w_i)) \\ \Leftrightarrow \max(\sum \log(w_i)),其中 w_i \in(0, 1) max(Πwi)max(log(Πwi))max(log(wi)),其中wi(0,1)

#include<iostream>
#include<cstring>
using namespace std;

const int N = 2010, INF = 0x3f3f3f3f;

int n, m, A, B;
double g[N][N];
double dist[N];
bool st[N];

void dij() {
    dist[A] = 1;
    
    for (int i = 1; i <= n; i ++ ) {
        int t = -1;
        for (int j = 1; j <= n; j ++ ) 
            if (!st[j] && (t == -1 || dist[j] > dist[t]))
                t = j;
        st[t] = true;
        for (int j = 1; j <= n; j ++ )
            dist[j] = max(dist[j], dist[t] * g[t][j]);
    }
}

int main(void) {
    cin >> n >> m;
    while (m -- ) {
        int a, b, c;
        cin >> a >> b >> c;
        double z = 1.0 - c/100.0;
        g[a][b] = g[b][a] = max(g[a][b], z);
    }
    cin >> A >> B;
    dij();
    printf("%.8lf", 100.0 / dist[B]);
    return 0;
}
题目链接:https://www.acwing.com/problem/content/4948/ 题目描述: 给定一棵有 $n$ 个结点的树,结点从 $1$ 到 $n$ 编号,每个结点都有一个权值 $w_i$,现在有 $m$ 次操作,每次操作是将树中编号为 $x$ 的结点的权值加上 $y$,然后询问一些节点是否为叶子节点,如果是输出 $1$,否则输出 $0$。 输入格式: 第一行包含两个整数 $n$ 和 $m$。 第二行包含 $n$ 个整数,其中第 $i$ 个整数表示结点 $i$ 的初始权值 $w_i$。 接下来 $n-1$ 行,每行包含两个整数 $a$ 和 $b$,表示点 $a$ 和点 $b$ 之间有一条无向边。 接下来 $m$ 行,每行描述一次操作,格式为三个整数 $t,x,y$。其中 $t$ 表示操作类型,$t=1$ 时表示将编号为 $x$ 的结点的权值加上 $y$,$t=2$ 时表示询问编号为 $x$ 的结点是否为叶子节点。 输出格式: 对于每个操作 $t=2$,输出一个结果,表示询问的结点是否为叶子节点。 数据范围: $1≤n,m≤10^5$, $1≤w_i,y≤10^9$ 样例: 输入: 5 5 1 2 3 4 5 1 2 1 3 3 4 3 5 2 3 0 1 3 100 2 3 0 1 1 100 2 3 0 输出: 1 0 0 算法1: 暴力dfs,每次都重新遍历整棵树,时间复杂度 $O(nm)$ 时间复杂度: 最坏情况下,每次操作都要遍历整棵树,时间复杂度 $O(nm)$,无法通过此题。 算法2: 用一个 vector<int> sons[n+5] 来存储每个点的所有子节点,这样可以用 $O(n)$ 预处理出每个点的度数 $deg_i$,如果 $deg_i=0$,则 $i$ 是叶子节点,否则不是。 对于每个操作,只需要更新叶子节点关系的变化就可以了。如果某个节点的度数从 $1$ 变成 $0$,则该节点变成了叶子节点;如果某个节点的度数从 $0$ 变成 $1$,则该节点不再是叶子节点。 时间复杂度: 每次操作的时间复杂度是 $O(1)$,总时间复杂度 $O(m)$,可以通过此题。 C++ 代码: (算法2)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值