原题链接:https://www.acwing.com/problem/content/178/
题目描述
有N个城市(编号0、1…N-1)和M条道路,构成一张无向图。
在每个城市里边都有一个加油站,不同的加油站的单位油价不一样。
现在你需要回答不超过100个问题,在每个问题中,请计算出一架油箱容量为C的车子,从起点城市S开到终点城市E至少要花多少油钱?
注意: 假定车子初始时油箱是空的。
输入格式
第一行包含两个整数N和M。
第二行包含N个整数,代表N个城市的单位油价,第i个数即为第i个城市的油价pi。
接下来M行,每行包括三个整数u,v,d,表示城市u与城市v之间存在道路,且车子从u到v需要消耗的油量为d。
接下来一行包含一个整数q,代表问题数量。
接下来q行,每行包含三个整数C、S、E,分别表示车子油箱容量、起点城市S、终点城市E。
输出格式
对于每个问题,输出一个整数,表示所需的最少油钱。
如果无法从起点城市开到终点城市,则输出”impossible”。
每个结果占一行。
数据范围
1≤N≤1000,
1≤M≤10000,
1≤pi≤100,
1≤d≤100,
1≤C≤100
输入样例:
5 5
10 10 20 12 13
0 1 9
0 2 8
1 2 1
1 3 11
2 3 7
2
10 0 3
20 1 4
输出样例:
170
impossible
题解
从起点到终点的最小花费,可以转化为最短路问题。但是这里有一个限制条件,就是当前剩余油量要大于从某一个点到另一个点的花费。那么这条边就是成立的并且它的权重我们可以看成是0,即不需要加油就可以走到另一个点。
那加油这个操作怎么转化成一条边呢?可以用一个常用技巧------拆点。这里的解决办法是:将点的第几个点和剩余油量封装成一个点(ver, cap) 。
两条边:
将加一升油看成从点(ver, cap)–>(ver, cap + 1){cap + 1< C(总容量) } 边权 = price[ver]
将从一个点走到另一个点表示为(ver, cap)—>(newVer, cap - cost[i]){cap >= cost[i]}边权 = 0
#include <iostream>
#include <cstring>
#include <queue>
#include <algorithm>
using namespace std;
const int N = 1010, M = 20010, C = 110;
int dist[N][C];
bool st[N][C];
int p[N];
int h[N], e[M], ne[M], w[M],idx;
int n , m;
struct Ver
{
int d