HECRAS一维非恒定流体动力学

一维非恒定流体动力学

支配水流的物理定律有:(1)质量守恒定律(连续性)和(2)动量守恒定律。这些定律在数学上以偏微分方程式的形式表示,此后将称为连续性和动量方程式。基于 James A. Liggett 在明渠非定常流(Mahmmod 和 Yevjevich,1975 年)一书中的一篇论文介绍了这些方程的推导。

连续性方程

考虑图1所示的基本控制体积。在此图中,沿通道测量距离x,如图所示。在控制体积的中点处,流量和总流量面积分别表示为Q(x,t)A_T。总流动面积为有源区A和非流道储存区S之和。

 

图1用于推导连续性和动量方程的基本控制体积

控制体积的质量守恒表示流入该体积的净速率等于该体积内存储的变化率。流入控制体积的速率可写为:

Q-\frac{\partial Q}{\partial x}\frac{\Delta x}{2}                                                                   (1)

流出速度比率为:

Q+\frac{\partial Q}{\partial x}\frac{\Delta x}{2}                                                                    (2)

以及存储的变化率:

\frac{\partial A_T}{\partial t}\Delta x                                                                        (3)

假设 \Delta x很小,控制容积中的质量变化等于:

\rho \frac{\partial A_T}{\partial t}\Delta x=\rho[(Q-\frac{\partial Q}{\partial x}\frac{\Delta x}{2})-(Q+\frac{\partial Q}{\partial x}\frac{\Delta x}{2})+Q_l]                              (4)

其中Q_l是进入控制体积的侧向流量,\rho是流体密度。简化并除以\rho \Delta x可得到连续性方程的最终形式:

\frac{\partial A_T}{\partial t}+\frac{\partial Q}{\partial x}-q_l=0                                                            (5)

其中q_l是每单位长度的侧向流量。

动量公式

动量守恒由牛顿第二定律表示为:

\sum F_x=\frac{d \vec{M}}{d t}                                                                 (6)

控制体积的动量守恒指出进入体积的动量净速率(动量通量)加上作用在体积上的所有外力的总和等于动量的累积速率。这是在 x 方向上应用的向量方程。动量通量 (MV) 是流体质量乘以流动方向上的速度矢量。将考虑三种力:(1) 压力,(2) 重力和 (3) 边界阻力或摩擦力。

压力:图 2 说明了不规则横截面的一般情况。假设压力分布是流体静力学的(压力随深度线性变化),总压力是横截面上压力面积积的积分。根据 Shames (1962),任意点的压力都可以写成:

F_P=\int_0^h \rho g(h-y) T(y) d y                                                       (7)

其中h是深度,y是渠道内底上方的距离,T(y)是将横截面宽度与渠道内底上方的距离联系起来的宽度函数。

F_P为控制体积中点x方向的压力,则控制体积上游端的力可写为:

F_P-\frac{\partial F_{P}}{\partial x}\frac{\Delta x}{2}                                                                    (8)

而在下游端则为:

F_P+\frac{\partial F_{P}}{\partial x}\frac{\Delta x}{2}                                                                     (9)

图 2与压力定义相关的各项说明

因此,控制体积的压力总和可写为:

F_{P n}=\left|F_P-\frac{\partial F_P}{\partial x} \frac{\Delta x}{2}\right|-\left|F_P+\frac{\partial F_P}{\partial x} \frac{\Delta x}{2}\right|+F_B                                   (10)

其中 F_{Pn} 是控制体积的净压力,F_B是沿 x 方向对流体施加的力。这可以简化为:

F_{Pn}=-\frac{\partial F_p}{\partial x}\Delta x+F_B                                                        (11)

使用莱布尼茨法则对方程7求微分,然后代入方程11得到:

F_{P n}=-\rho g \Delta x\left[\frac{\partial h}{\partial x} \int_0^h T(y) d y+\int_0^h(h-y) \frac{\partial T(y)}{\partial x} d y\right]+F_B                    (12)

公式12中的第一个积分是横截面面积A。第二个积分(乘以-\rho g\Delta x)是流体施加在堤岸上的压力,其大小完全相等,但方向与F_B相反。因此,净压力可写为:

F_{Pn}=-\rho gA\frac{\partial h}{\partial x}\Delta x                                                             (13)

重力:由于重力作用在控制体积内的流体上的 x 方向力为:

 F_g=\rho gAsin\theta \Delta x                                                                 (14)

其中\theta是通道反转与水平线形成的角度。对于天然河流来说,\theta很小,sin\theta =tan\theta =\partial Z_0/\partial X,其中Z_0是内底高程。。因此,引力可以写成:

F_g=-\rho gA\frac{\partial z_0}{\partial x}\Delta x                                                                (15)

对于负的基床坡度,此力将为正值。

边界阻力(摩擦力):流道与流体之间的摩擦力可写为:

F_f=-\tau _0P\Delta x                                                                     (16)

其中,\tau _0是作用在流体边界上的平均边界剪应力(力/单位面积),P是湿周。负号表示,当流动方向为正x方向时,力在负x方向上作用。根据量纲分析,\tau _0可以用阻力系数C_D表示如下:

\tau _0=\rho C_DV^2                                                                       (17)

阻力系数可能通过以下方式与 Chezy 系数 C相关:

C_D=\frac{g}{C^2}                                                                           (18)

此外,Chezy方程可以写成:

V=C\sqrt{RS_f}                                                                       (19)

将公式17、18和19代入16并进行简化,可得到以下边界阻力表达式:

F_f=-\rho gAS_f\Delta x                                                                 (20)

其中S_f是摩擦斜率,对于正x方向的流动是正的。摩擦斜率必须与流量和阶段有关。传统上,使用 Manning 和 Chezy 摩擦方程。由于曼宁方程主要用于美国,因此它也用于 HEC-RAS。曼宁方程写为:

S_f=\frac{Q|Q|n^2}{2.208R^{4/3}A^2}                                                                 (21)

其中R是水力半径,n是曼宁摩擦系数。

动量通量:定义了三个力项后,仅保留动量通量。进入控制体积的流量可写为:

\rho [QV-\frac{\partial QV}{\partial x}\frac{\Delta x}{2}]                                                               (22)

离开体积的通量可以写成:

\rho [QV+\frac{\partial QV}{\partial x}\frac{\Delta x}{2}]                                                               (23)

因此,进入控制体积的动量净速率(动量通量)为:

-\rho \frac{\partial QV}{\partial x}\Delta x                                                                      (24)

由于控制体积中流体的动量为\rho Q\Delta x,动量的累积速率可写为:

\frac{\partial}{\partial t}(\rho Q\Delta x)=\rho \Delta x\frac{\partial Q}{\partial t}                                                              (25)

重申动量守恒原理:

进入体积(公式24)的动量净速率(动量通量)加上作用在体积上的所有外力之和[(公式13)+(公式15)+(公式20)]等于动量累积速率(公式25)。因此:

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

三千思丶

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值