AI最新进展介绍——大世界模型Large World Model (LWM)

研究人员开发的大世界模型(LWM)通过RingAttention在大规模视频和书籍数据集上训练,实现了对语言、图像和视频的深入理解及生成。该模型在理解长序列和多模态任务上树立新标杆,包括长视频问答、大规模事实检索和生成式对话等。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

大世界模型 Large World Model (LWM)

UC Berkeley

  大世界模型(LWM)是一种通用的大型上下文多模态自回归模型。它使用 RingAttention 在一个包含各种长视频和书籍的大型数据集上进行训练,可以进行语言、图像和视频的理解和生成。

  目前的语言模型在理解“世界上难以用言语描述的方面”存在不足,而且在复杂的长篇任务中也很吃力。视频序列提供了语言和静态图像所不具备的宝贵的时间信息,因此非常适合与语言联合建模。这种模型可以发展出对人类文字知识和物理世界的理解,从而实现更广泛的人工智能辅助人类的能力。然而,由于内存限制、计算复杂性和数据集有限等原因,从数以百万计的标记视频和语言序列中进行学习是一项挑战。为了应对这些挑战,我们策划了一个包含各种视频和书籍的大型数据集,利用 RingAttention 技术对长序列进行可扩展的训练,并逐步将上下文大小从 4K 增加到 100 标记。本文的贡献如下:

  (a)最大上下文大小的神经网络: 我们在长视频和语言序列上训练了一个最大的上下文大小转换器,为困难的检索任务和长视频理解设定了新的基准。

  (b)克服视觉-语言训练挑战的解决方案,包括使用掩码序列打包混合不同的序列长度、损失加权以平衡语言和视觉,以及模型生成的长序列聊天 QA 数据集。

  (c)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值