自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(23)
  • 收藏
  • 关注

原创 【软件测试】python——Unittest

UnitTest 是 python 自带的一个单元测试框架,可以用来进行单元测试。

2024-10-28 16:07:34 548

原创 读取 json 文件

【代码】读取 json 文件。

2024-10-15 22:36:06 234

原创 【软件测试】基本知识3

①常见项目回归:项目本次发布新增2个模块,最基本要测新增模块功能及新增模块关联的旧模块。面试题:发现缺陷后,首先应该怎么办?----确定缺陷可复现,确定是bug。回归bug:上一个版本发现的缺陷,开发修复完毕,在下一个版本进行重新验证。缺陷的定义:软件在使用过程中存在的任何问题都叫软件的缺陷,简称bug。1、项目管理工具-管理缺陷(禅道, JIRA, TFS)②非常规项目(银行、部队、航天):新增功能,必须全部复测。提示:知道测试喝开发流程中设计的工作即可。提交时,要检查缺陷是否已存在。

2024-10-12 21:29:06 392

原创 【软件测试】基本知识2

由多个输入条件,多个输出结果,输入条件之间有组合关系,输入条件和输出结果之间。3、如果条件超过4个,就不适合覆盖所有条件,应采用(正交法)来解决。说明:在所有测试数据中,具有某种共同特征的数据集合进行划分。判定表一般适用于条件组合数量较少的情况(比如4个条件以下)针对:需要有大量数据测试输入,但是没法穷举测试的地方。1、多条件之间有依赖关系,使用判定表来进行测试覆盖。- 判定表中贯穿条件项和动作项的一类就是一条规则。2、判定表一般适合4个以内条件依赖关系。典型代表:页面的输入框类测试。

2024-10-12 17:37:59 991

原创 【软件测试】基础知识1

使用技术手段验证软件是否满足需求。

2024-10-11 22:35:04 206

原创 【Linux】常见命令的基本使用2

正则表达式时对字符串操作的一种逻辑公式,就是用实现定义好的一些特定字符及这些特定字符的组合,组成一个‘规则字符串’,这个“规则字符串”用来表达对字符串的一种过滤逻辑。选项 表示建立一个硬链接文件,两个文件占用相同大小的磁盘空间,即使删除了源文件,链接文件还是存在,所以。命令功能非常强大,通常用来在特定的目录下搜索符合条件的文件,也可以用来搜索特定用户属主的文件。查看内容时,在信息过长无法在一屏上显示时,是的用户无法看清文件的内容,此时可以使用。这个命令并没有压缩的功能,它只是一个打包的命令,但是在。

2024-10-09 12:06:34 840

原创 【Linux】常见命令的基本使用1

ls > test.txt ( test.txt 如果不存在,则创建,存在,则覆盖其内容 )Linux允许将命令执行结果重定向到一个文件,本应显示在终端上的内容保存到指定文件中。mv 1.txt 2.txt -> 将文件名为1.txt的文件重命名为2.txt。② Linux系统中没有严格的后缀格式,所以创建文件时可以命名为任意的文件名。注意:>输出重定向回覆盖原来的内容,>>输出重定向则会追加到文件的尾部。ls -a 显示所有文件,包含隐藏文件,隐藏文件是.开头的文件。参数以逐个确认要删除的文件。

2024-10-08 22:33:38 877

原创 【Linux】vim编辑器

vi是的简称,它在Linux上的地位就仿佛Edit程序在DOS上一样。它可以执行输出、删除、查找、替换、块操作等众多文本操作,而且用户可以根据自己的需要对其进行定制。Vi不是一个排版程序,它不像Word或WPS那样可以对字体、格式、段落等其他属性进行编排,它只是一个文本编辑程序。vi没有菜单,只有命令,且命令繁多。

2024-10-08 15:38:40 701

原创 【面试】每日力扣 Day 7 —— 动态规划 1

递归方法通过自顶向下的方式解决问题,而记忆化搜索可以避免重复计算,从而提高效率。这个递归方法虽然直观,但由于时间复杂度较高,不适合大规模问题。对于大规模问题,可以考虑使用动态规划或迭代方法来优化。结尾的最长严格递增子序列的长度。通过迭代计算每个位置的最长递增子序列长度,最终得到结果。使用动态规划的思想,但通过优化空间复杂度,只使用了两个变量来存储中间结果。通过迭代计算每个金额的最少硬币个数,最终得到结果。递归方法的思路是,每次爬楼梯时,可以选择爬。阶的方法数,然后通过迭代计算到达第。阶的方法数等于到达第。

2024-09-17 18:46:09 676

原创 【面试】每日力扣 Day 6 ——二分法 2

34、在排序数组中查找元素的第一个和最后一个位置。

2024-09-17 16:55:19 973

原创 【面试】每日力扣题 Day5——二分法 1

这种方法利用了矩阵的有序性,从右上角开始搜索。如果当前元素小于目标值,则向下移动。函数:用于在有序列表中查找插入位置。它返回一个位置,使得插入元素后列表仍然保持有序。如果元素已经存在于列表中,返回它的左侧位置。由于矩阵的每一行是递增的,且每行的第一个数大于前一行的最后一个数,如果把矩阵每一行拼在一起,我们可以得到一个递增数组。这种方法是最直接的,通过遍历整个数组来查找目标值。虽然简单,但时间复杂度为 O(n),不符合题目要求。:对每一行进行二分查找,查找目标值是否在当前行中。:由于左右元素不相同,因此。

2024-09-16 22:08:24 848

原创 【面试】每日力扣 Day5 ---- 图论

leetcode面试经典150题:200、岛屿数量130、被围绕的区域133、克隆图

2024-09-16 19:35:52 761

原创 【面试】每日力扣 Day4

给你一个字符串 s,由若干单词组成,单词前后用一些空格字符隔开。返回字符串中最后一个单词的长度。单词是指仅由字母组成、不包含任何空格字符的最大子字符串。示例 1:输入:s = “Hello World”输出:5解释:最后一个单词是“World”,长度为 5。

2024-09-15 21:01:08 835

原创 【面试】每日力扣 Day3

给你一个整数数组 nums,返回 数组 answer ,其中 answer[i] 等于 nums 中除 nums[i] 之外其余各元素的乘积。给定两个整数数组 gas 和 cost ,如果你可以按顺序绕环路行驶一周,则返回出发时加油站的编号,否则返回 -1。// 由于 2 是集合中唯一的数字,getRandom 总是返回 2。你无法返回 2 号加油站,因为返程需要消耗 4 升汽油,但是你的油箱只有 3 升汽油。输入: gas = [1,2,3,4,5], cost = [3,4,5,1,2]

2024-09-08 17:39:40 994

原创 【面试】每日力扣 Day2

方法1(哈希表)通过统计每个元素的出现次数来找到多数元素,适用于需要快速实现的情况,但空间复杂度较高。方法2(排序)通过排序后直接返回中间元素来找到多数元素,适用于数组较小且可以接受排序操作的情况。方法3(Boyer-Moore 投票算法)通过计数器来跟踪候选多数元素,时间和空间复杂度都较低,适用于大多数情况。在实际应用中,方法3(Boyer-Moore 投票算法)通常是最优选择,因为它在时间和空间复杂度上都表现优异。

2024-09-07 17:27:51 764

原创 【面试】每日力扣 Day1

nums 的其余元素与 nums 的大小不重要。解释:函数应返回新长度 length = 7, 并且原数组的前七个元素被修改为 0, 0, 1, 1, 2, 3, 3。输入:nums1 = [1,2,3,0,0,0], m = 3, nums2 = [2,5,6], n = 3。解释:你的函数应该返回 k = 5,并且 nums 中的前五个元素为 0,0,1,3,4。输入:nums = [0,1,2,2,3,0,4,2], val = 2。输入:nums = [0,0,1,1,1,2,2,3,3,4]

2024-09-07 13:47:01 876

原创 【论文阅读】PointVector: A Vector Representation In Point Cloud Analysis

在点云分析中,基于点的方法近年来发展迅速。这些方法最近专注于简洁的MLP结构,如PointNeXt,它已经展示出与卷积和Transformer结构的竞争力。然而,标准的MLP在有效提取局部特征方面存在限制。为了解决这个限制,我们提出了一个向量导向的点集抽象,可以通过高维向量聚合邻近特征。为了便于网络优化,我们构建了一个从标量到向量的转换,使用基于3D向量旋转的独立角度。最后,我们开发了一个遵循PointNeXt结构的PointVector模型。

2023-11-20 21:14:45 430

原创 【论文阅读】 Training Noise-Robust Deep Neural Networks via Meta-Learning

问题背景:标签噪声可能会显著降低深度神经网络的性能。为了训练噪声鲁棒的深度神经网络,损失纠正(LC)方法被引入。LC方法假设噪声标签是由一个未知的噪声转移矩阵T从干净(真实)标签中损坏的。因此,LC方法试图准确地学习这个矩阵T。方法创新:作者提出了一种新的损失纠正方法,称为元损失纠正(MLC),它可以通过元学习框架直接从数据中学习噪声转移矩阵T。MLC 不依赖于先验知识或假设,而是利用一个小的干净验证集来指导T的优化。实验结果。

2023-10-21 21:55:33 39

原创 【代码】最远点采样

最远点采样代码

2023-08-01 15:11:01 163

原创 论文阅读【Exploring Self-attention for Image Recognition】

self-attention可以作为图像识别模型的基本组成部分,本文考虑两种形式:pairwise self-attention和patchwise self-attention。

2023-06-27 18:09:31 386

原创 论文阅读【MM-PCQA: Multi-Modal Learning for No-reference Point Cloud Quality Assessment】

之前的工作,使用单模态信息进行PCQA从二维投影中提取,投影图片包含丰富的纹理和语义信息但高度依赖视点;从三维点云中提取,三维点云对几何畸变更为敏感,对视点不变性。本文提出了一种新的多模式无参考点云质量评估(NR-PCQA)度量将点云分成子模型来表示局部几何失真(基于点),将点云渲染成二维图像投影进行纹理特征提取(基于图像),最后采用对称跨模态注意融合多模态质量感知信息。

2023-06-27 10:08:38 616

原创 论文阅读【Inferring Point Cloud via Graph Similarity】

本文首先通过重采样,获得关键点,从而得到点云骨架,其次构建局部图,然后计算颜色梯度,并将其聚合,最后通过相似度池化得到最后的质量分数。本文首次采用图信号处理技术来获取点云质量,提出了颜色梯度矩阵(零阶矩,一阶矩,二阶矩)。

2023-06-25 18:19:12 185 1

原创 【python图片填充】

需求:从原始图片中填充像素使图片大小变为指定大小,且不改变原始图片

2023-06-24 13:06:00 365

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除