KMP算法

本文深入探讨了KMP(Knuth-Morris-Pratt)字符串匹配算法,它避免了暴力算法中的回溯,提高了效率。通过分析模式串的前后缀匹配,KMP算法能够在文本串中快速定位模式串的位置。在遇到不匹配时,模式串只需移动特定步长,而文本串指针保持不变。算法的关键在于构建next表,用于存储模式串的局部匹配信息。最后,给出了KMP算法的主要步骤和next表的构建方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

KPM算法简介:
A B C A B C D J B N K (文本串)
A B C A B B (模式串)
例如这个文本串与模式串,前5个元素都匹配,直到第六个元素不匹配,按照暴力算法,应该将模式串向后移动一个单位,在依次比较,而KMP算法的做法是:
A B C A B C D J B N K
   A B C A B B
KPM算法分析:
当文本串与模式串比对的时候,如果在某个位置比对终止,此时有 T[i]!=P[j] ,那么要设法保持文本串指针不回溯,只移动模式串的指针,现在关键就是计算模式串移动几个单位。
 前一轮比对中,确定的文本串与模式串的匹配范围是:
P[0,j]=T[i-j,i]
 那么如果模式串P经过右移之后,能够与T的某一子串完全匹配的必要条件是:
P[0,t)=P[j-t,j)=T[i-t,i)
也就是说,在P[0,j]中长度为t的真前缀,必须要与产长度为t的真后缀完全匹配,则 t 来自计集合:
N(P, j) = {0<= t < j | P[0,t) = P[j-t,j) }
那么下一轮比对将从T[i]与P[t]开始,相当于将P右移 j-t 个单位。同时t的值应该在集合N(P, j)中挑选最大的。
令:next[ j ] = max ( N( P, j ) )

KPM主算法:

int  match(char *P,char *T){
	int *next=buildNext(P);
	int n=(int)strlen(T);
	int i=0;//文本串指针
	int m=(int)strlen(P);
	int j=0;//模式串指针
	while(j<m&&i<n){
		if(0>j||T[i]==P[j]){
			i++;
			j++;
		}
		else
			j=next[j];//模式串指针右移,保持文本串指针不回溯
	}
	delete []next;
	return i-j;
}

构造模式串P的next表的算法:


<think>好的,用户想了解KMP算法的原理及实现。首先,我需要回顾一下KMP的基本概念。KMP算法主要用于字符配,解决传统暴力配中的重复遍历问题。传统方法在主子串部分配时,主指针会回退,导致效率低下。而KMP通过预处理子串生成next数组,利用已知信息避免不必要的回溯,提高效率。 接下来,我需要解释KMP的核心原理。关键点在于next数组,它记录了子串每个位置的最长公共前后缀长度。当发生不配时,根据next数组的值调整子串的位置,主指针无需回退。例如,在子串"ABABC"中,每个字符对应的next值需要明确说明如何计算。 然后是实现部分。需要详细说明如何构建next数组,通常包括初始化、处理前后缀相同和不同的情况。然后描述配过程,主子串指针的移动逻辑,特别是当不配时如何利用next数组跳转。可能还需要一个具体的例子来演示流程,比如主"ABABABABC"和子串"ABABC"的配过程。 还要注意时间复杂度的分析,KMP的预处理是O(m),配是O(n),总的是O(n+m),比暴力法的O(n*m)更高效。同时,可能需要对比传统算法,突出KMP的优势,尤其是在有大量部分配的情况下。 用户提供的引用资料中提到next数组的构造类似于KMP算法本身,这一点需要强调,可能在代码实现中体现。另外,引用5提到前缀数组的计算方法,这应该包含在next数组的构建步骤中。 需要确保回答结构清晰,分点讲解原理、next数组构建、配步骤、代码实现和示例。最后生成相关问题,帮助用户进一步学习,如优化、应用场景、对比其他算法等。 在代码实现部分,要使用Python示例,并确保语法正确。同时,数学公式如计算最长公共前后缀时可能需要用LaTeX表示,如最长公共前后缀长度公式,使用$...$格式。 最后检查是否满足用户的所有要求,包括中文回答、LaTeX格式正确、引用标注自然等。确保回答正确可靠,参考了提供的引用资料,并正确标注来源。</think>### KMP算法原理及实现 #### 一、核心原理 KMP算法通过预处理子串生成**next数组**(即前缀函数),利用已配的信息避免主指针回退。核心思想是:当子串与主配时,根据next数组的值调整子串的起始位置,而非暴力配中的逐字符回退。 1. **next数组定义** next数组存储子串每个位置$i$的最长公共前后缀长度(不包含自身)。例如子串$P=ABABC$的next数组为: $$next = [-1, 0, 0, 1, 2]$$ 其中,$next[4]=2$表示前缀$AB$与后缀$AB$配[^5]。 2. **配过程优化** - 主指针$i$始终单向移动,子串指针$j$根据next数组跳转。 - 当$P[j] \neq T[i]$时,子串向右滑动$j - next[j]$位,即$j = next[j]$[^2][^4]。 #### 二、next数组构建步骤 以子串$P$为例(索引从0开始): 1. 初始化$next[0] = -1$,$j = -1$(哨兵节点)。 2. 遍历子串$P$,若$P[i] = P[j]$,则$next[i+1] = j + 1$。 3. 若$P[i] \neq P[j]$,则递归回退$j = next[j]$直至配或$j = -1$[^4]。 #### 三、算法实现(Python) ```python def build_next(pattern): next_arr = [-1] * len(pattern) j = -1 for i in range(1, len(pattern)): while j >= 0 and pattern[i] != pattern[j + 1]: j = next_arr[j] if pattern[i] == pattern[j + 1]: j += 1 next_arr[i] = j return next_arr def kmp_search(text, pattern): next_arr = build_next(pattern) j = -1 for i in range(len(text)): while j >= 0 and text[i] != pattern[j + 1]: j = next_arr[j] if text[i] == pattern[j + 1]: j += 1 if j == len(pattern) - 1: return i - j # 返回配起始位置 return -1 ``` #### 四、示例分析 假设主$T=ABABABABC$,子串$P=ABABC$: 1. next数组为$[-1, 0, 0, 1, 2]$。 2. 当配到$T[4]$(字符A)与$P[4]$(字符C)不配时,子串跳转至$j=next[4]=2$,继续配[^2]。 #### 五、时间复杂度 - 预处理next数组:$O(m)$ - 配过程:$O(n)$ - 总时间复杂度:$O(n + m)$,优于暴力法的$O(n \times m)$[^3]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值