函数基础
- 函数时第一类对象, 即函数可以当做数据传递
1 可以被引用
2 可以当作参数传递
3 返回值可以是函数
3 可以当作容器类型的元素
利用该特性, 可以取代多分支if判断
def foo():
print('foo')
def bar():
print('bar')
dic={
'foo':foo,
'bar':bar,
}
while True:
choice=input('>>: ').strip()
if choice in dic:
dic[choice]()
函数嵌套调用(容易产生递归)
def max(x,y):
return x if x > y else y
def max4(a,b,c,d):
res1=max(a,b)
res2=max(res1,c)
res3=max(res2,d)
return res3
print(max4(1,2,3,4))
函数的嵌套定义
def f1():
def f2():
def f3():
print('from f3')
f3()
f2()
f1()
f3() #报错,为何?
闭包函数上线
- 名称空间和作用域
名称空间:存放名字的地方,三种名称空间,(之前遗留的问题x=1,1存放于内存中,那名字x存放在哪里呢?
名称空间正是存放名字x与1绑定关系的地方)
名称空间加载顺序
python test.py
1、python解释器先启动,因而首先加载的是:内置名称空间
2、执行test.py文件,然后以文件为基础,加载全局名称空间
3、在执行文件的过程中如果调用函数,则临时产生局部名称空间
名称空间查找顺序
局部名称空间--->全局名称空间--->内置名称空间
需要注意的是:在全局无法查看局部的,在局部可以查看全局的
作用域
1、作用域即范围
- 全局范围(内置名称空间与全局名称空间属于该范围):全局存活,全局有效
- 局部范围(局部名称空间属于该范围):临时存活,局部有效
2、作用域关系是在函数定义阶段就已经固定的,与函数的调用位置无关
3、查看作用域:globals(),locals()
LEGB 代表名字查找顺序: locals -> enclosing function -> globals -> __builtins__
locals 是函数内的名字空间,包括局部变量和形参
enclosing 外部嵌套函数的名字空间(闭包中常见)
globals 全局变量,函数定义所在模块的名字空间
builtins 内置模块的名字空间
global与nonlocal关键字
golobal: 打破局部对外变量的改变
nonlocal: 内层函数对外层函数值修改
闭包函数
内部函数包含对外部作用域而非全局作用域的引用
提示:之前我们都是通过参数将外部的值传给函数,闭包提供了另外一种思路,包起来喽,包起呦,包起来哇
def wrapper(func):
def inner(*args,**kwargs):
res = func(*args,**kwargs)
return res
return inner
闭包是的应用
闭包的意义:返回的函数对象,不仅仅是一个函数对象,在该函数外还包裹了一层作用域,这使得,该函数无论
在何处调用,优先使用自己外层包裹的作用域
应用领域:延迟计算(原来我们是传参,现在我们是包起来)
主要就是利用外部访问不到内部功能, 只能通过接口来访问内部,
装饰器
装饰器就是闭包函数的一种应用场景
开放封闭原则:对修改封闭,对扩展开放
解释:
装饰器他人的器具,本身可以是任意可调用对象,被装饰者也可以是任意可调用对象。
强调装饰器的原则:1 不修改被装饰对象的源代码 2 不修改被装饰对象的调用方式
装饰器的目标:在遵循1和2的前提下,为被装饰对象添加上新功能
标准无参装饰器
def wrapper(func):
def inner(*args,**kwargs):
res = func(*args,**kwargs)
return res
return inner
标准有参装饰器
def auth(file):
def wrapper(func):
def inner(*args,**kwargs):
# file为传参, 形参在这里使用或上一层使用
res = func(*args,**kwargs)
return res
return inner
return wrapper
装饰器语法糖
被装饰函数的正上方,单独一行
@deco1
@deco2
@deco3
def foo():
pass
foo=deco1(deco2(deco3(foo)))
当多个装饰器存在时, 加载顺序从下往上, 执行顺序从上往下
装饰器补充: wraps 把原文档一并拷过来, 伪装的更像了
from functools import wraps
def deco(func):
@wraps(func) #加在最内层函数正上方
def wrapper(*args,**kwargs):
return func(*args,**kwargs)
return wrapper
@deco
def index():
'''哈哈哈哈'''
print('from index')
print(index.__doc__)
迭代器
概念:
迭代器即迭代的工具,那什么是迭代呢?
迭代是一个重复的过程,每次重复即一次迭代,并且每次迭代的结果都是下一次迭代的初始值
对于序列类型:字符串、列表、元组,我们可以使用索引的方式迭代取出其包含的元素。但对于字典、集合、文
件等类型是没有索引的,若还想取出其内部包含的元素,则必须找出一种不依赖于索引的迭代方式,这就是迭代器
什么是可迭代对象?
可迭代对象指的是内置有__iter__方法的对象,即obj.__iter__
什么是迭代器对象?
可迭代对象执行obj.__iter__()得到的结果就是迭代器对象
而迭代器对象指的是即内置有__iter__又内置有__next__方法的对象
文件类型是迭代器对象
注意:
迭代器对象一定是可迭代对象,而可迭代对象不一定是迭代器对象
迭代器对象的使用
iter_dic=dic.__iter__() #得到迭代器对象,迭代器对象即有__iter__又有__next__,
但是:迭代器.__iter__()得到的仍然是迭代器本身
next一次出一个值
有了迭代器,我们就可以不依赖索引迭代取值了
for循环工作原理
基于for循环,我们可以完全不再依赖索引去取值了
dic={'a':1,'b':2,'c':3}
for k in dic:
print(dic[k])
1:执行in后对象的dic.__iter__()方法,得到一个迭代器对象iter_dic
2: 执行next(iter_dic),将得到的值赋值给k,然后执行循环体代码
3: 重复过程2,直到捕捉到异常StopIteration,结束循环
迭代器优缺点
优点:
- 提供一种统一的、不依赖于索引的迭代方式
- 惰性计算,节省内存
缺点:
- 无法获取长度(只有在next完毕才知道到底有几个值)
- 一次性的,只能往后走,不能往前退
生成器
只要函数内部包含有yield关键字,那么函数名()的到的结果就是生成器,并且不会执行函数内部代码
生成器就是迭代器
g.__iter__
g.__next__
所以生成器就是迭代器,因此可以这么取值
res=next(g)
print(res)
总结:
把函数做成迭代器
对比return,可以返回多次值,可以挂起/保存函数的运行状态
面向过程编程
1、首先强调:面向过程编程绝对不是用函数编程这么简单,面向过程是一种编程思路、思想,而编程思路是不依
赖于具体的语言或语法的。言外之意是即使我们不依赖于函数,也可以基于面向过程的思想编写程序
2、定义
基于面向过程设计程序就好比在设计一条流水线,是一种机械式的思维方式
3、优点:复杂的问题流程化,进而简单化
4、缺点:可扩展性差,修改流水线的任意一个阶段,都会牵一发而动全身
5、应用:扩展性要求不高的场景,典型案例如linux内核,git,httpd
三元表达式 用于if判断
name=input('姓名>>: ')
res='css' if name == 'chen' else 'NB'
print(res)
列表推导式
lis = [“xxx%s” %i for i in range(10)]
3、优点:方便,改变了编程习惯,可称之为声明式编程
生成器表达式
把列表推导式的[]换成()就是生成器表达式
示例:生一筐鸡蛋变成给你一只老母鸡,用的时候就下蛋,这也是生成器的特性
chicken=(‘鸡蛋%s’ %i for i in range(5))
递归与二分法
递归调用是函数嵌套调用的一种特殊形式,函数在调用时,直接或间接调用了自身,就是递归调用
递归调用应该分为两个明确的阶段:递推,回溯
1、递归调用应该包含两个明确的阶段:回溯,递推
回溯就是从外向里一层一层递归调用下去,
回溯阶段必须要有一个明确地结束条件,每进入下一次递归时,问题的规模都应该有所减少(否则,单纯地重复调用自身是毫无意义的)
递推就是从里向外一层一层结束递归
二分法
pass
- 匿名函数(函数高阶)
匿名函数就是没有名字的函数
lambda x,y,z=1:x+y+z
#与函数有相同的作用域,但是匿名意味着引用计数为0,使用一次就释放,除非让其有名字
有名函数与匿名函数的对比
有名函数:循环使用,保存了名字,通过名字就可以重复引用函数功能
匿名函数:一次性使用,随时随时定义
应用:max,min,sorted,map,reduce,filter