Abstract
水稻细菌性条斑病(BLS)是水稻叶片上的一种严重病害,严重影响水稻的质量和数量。病害严重程度的自动估计是农业生产的重要要求。针对这一问题,提出了一种基于UNet网络语义分割的水稻和BLSNet叶片病变识别与分割方法。在BLSNet中引入注意机制和多尺度提取融合,提高了病灶分割的准确性。我们将该网络与DeepLabv3+和UNet作为用于语义分割的基准模型进行性能比较。结果表明,所提出的BLSNet模型具有较高的分割精度和分类精度。基于我们的BLS分割结果,对BLS疾病严重程度估计进行了初步研究,发现所提出的BLSNet方法有很强的潜力成为可靠的BLS疾病严重程度自动估计器。
关键词:水稻细菌性条斑病;叶疾病识别;病灶分割;语义分割;深度学习;卷积神经网络;疾病严重程度的评估
1. Introduction
【1】水稻(Oryza sativa L.)是亚洲三大主要作物之一,广泛种植。由于水稻生长在相对炎热和潮湿的条件下具有复杂的特性,它很容易生病。水稻细菌性条斑病(BLS)是影响水稻生产的最严重病害之一,发生在水稻生长周期的早期,传播迅速,危害严重。
【2】及时监测和预测黑穗病的发生发展对维持水稻生产具有重要意义。叶片通常受到BLS的损害,传统的BLS疾病严重程度的估计依赖于病变面积占总叶面积的比例。叶害的估计在很大程度上取决于农学家和农民的经验水平,这是劳动密集型和耗时的&#x