研究内容
生物胁迫包括通过其他生物体对植物的损害。对害虫和病原体(病毒、真菌、细菌等)等生物制剂的有效控制与农业可持续性的概念密切相关。农业可持续性促进了新技术的发展,这些新技术可以减少对环境的影响,让农民更容易获得,从而提高生产力。将计算机视觉与深度学习方法结合使用可以及早和正确地识别引起压力的因素。因此,可以尽快采取纠正措施来缓解问题。这项工作的目的是设计一个有效且实用的系统,能够识别和估计生物制剂对咖啡叶造成的压力严重程度。所提出的方法由一个基于卷积神经网络的多任务系统组成。此外,我们还探索了使用数据增强技术来使系统更加健壮和准确。使用 ResNet50 架构对所提出的系统进行的计算实验获得了 95.24% 的生物胁迫分类准确度和 86.51% 的严重性估计准确度。此外,发现仅对症状进行分类,结果大于 97%。实验结果表明,所提出的系统可能是帮助专家和农民识别和量化咖啡种植园生物胁迫的合适工具。
1. Introduction
在巴西经济的各个部门中,农业是主要支柱之一,为该国创造就业机会、收入和财富做出了贡献(Oliveira 等人,2014 年)。 根据国际咖啡组织(2019 年)的数据,巴西是世界上最大的咖啡生产国,这是该国的重要作物。 潜叶虫、锈病、褐斑病和尾孢菌叶斑病等生物胁迫会影响咖啡种植园,导致落叶和光合作用减少&#x