Task05:详读西瓜书+南瓜书第6章 支持向量机

本文详细解读了西瓜书和南瓜书中关于支持向量机的内容,包括模型的构建、最大化间隔策略、算法实现、软间隔的概念以及支持向量回归(SVR)的策略。通过拉格朗日乘子法解决优化问题,探讨了如何处理线性不可分数据的挑战。
摘要由CSDN通过智能技术生成

支持向量机

二分类学习最基本的想法就是基于训练集D在样本空间中找到一个划分超平面。
支持向量机
从集合几何角度来看,对于线性可分数据集,支持向量机就是找距离正负样本都最远的那个超平面。
相比于感知机:其解唯一,且泛化性能更好

模型

在这里插入图片描述

策略

我们希望找到具有“最大间隔”的划分超平面。
最后得到优化问题
在这里插入图片描述

算法

想要求解上述式子,得到最优解,以确定这个划分超平面所对应的模型
在这里插入图片描述

求解:
对于式子6.6的求解,这个优化问题为含不等式约束的优化问题,且是凸优化问题。
这里采用的是拉格朗日乘子法得到“对偶问题”
解“对偶问题”得出α
解出α后,求出w和b从而确定模型
在这里插入图片描述

软间隔与正则化

前面的支持向量机有个前提:数据集是线性可分的。
,即存在一个超平面能将不同类的样本完全划分开。

为了缓解这个问题。想的一个办法就是允许支持向量机在一些样本上出错。因此,引入了“软间隔”的概念

软间隔

硬间隔:前面的支持向量机要求所有样本都必须满足式子6.3,
在这里插入图片描述

即所有样本都划分正确。
软间隔:
在这里插入图片描述
在这里插入图片描述

优化目标(策略)

在这里插入图片描述

在这里插入图片描述
这就是“软间隔支持向量机”

支持向量回归(SVR)

回归问题

SVR与传统回归模型计算损失的方式不同
在这里插入图片描述

策略

SVR优化问题可以写为
在这里插入图片描述

邱恩杰

采用拉格朗日乘子法得SVR的对偶问题,之后求解。
最后可得训练后模型:
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值