二分类和多分类

本文探讨了分类问题中的二分类和多分类,重点讲解了Sigmoid函数在二分类中的应用,以及Softmax函数如何用于多分类,并解释了其归一化概率分布的性质。同时提到了指数函数在Softmax中的作用,以及可能出现的数值溢出问题。
摘要由CSDN通过智能技术生成

对于分类问题,我们可以将其简单分为二分类和多分类。

二分类

Sigmoid函数

对于二分类问题,我们可以使用Sigmod函数(又称Logistic函数)。将实数范围内的数值映射成为一个[0,1]区间的数值,一个[0,1区间的数值恰好可以用来表示概率。
函数形式为:
在这里插入图片描述
函数图像如下:
在这里插入图片描述
参考1

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值