向量自回归VAR模型、结构向量自回归SVAR模型、VMA模型

 

### SVAR模型简介 SVAR(Structural Vector Autoregression,结构向量自回归模型是一种扩展的VAR(Vector Autoregression,向量自回归模型。它通过对VAR模型施加约束条件来识别经济冲击及其影响路径[^1]。具体来说,SVAR模型允许研究者基于理论假设引入特定矩阵形式的约束,从而更清晰地解释变量之间的因果关系。 为了构建有效的SVAR模型,数据需满足一定的前提条件。例如,在应用之前应确保时间序列数据具有平稳性特征。这通常通过ADF(Augmented Dickey-Fuller)单位根检验完成。如果原始数据不平稳,则可能需要对其进行对数变换或进一步差分处理以达到平稳状态[^2]。 ### 数据预处理与模型建立流程 #### 平稳性检测 在实际操作过程中,首要任务是对所选变量执行ADF测试评估其稳定性状况。只有当所有参与计算的时间序列均表现为稳定特性时,才可继续推进后续环节;反之则需采取适当措施予以修正——比如取自然对数值后再做一次差异运算直至符合标准为止[^4]。 #### 构造VAR(p)基础框架 一旦确认各要素具备适配属性之后,便可着手搭建初步版本之下的多维滞后效应表达式: \[ Y_t = c + A_1Y_{t-1} + ... + A_pY_{t-p} + \epsilon_t \] 其中 \( p \) 表示滞后期长度参数的选择依据AIC/BIC准则确定最优解位置所在区间范围内的整数值作为最终设定值使用。 #### 施加结构性限制形成SVAR体系 接下来定义两组关键性的转换阵列W和B用于区分外生随机扰动项之间相互独立与否以及内部传导机制是否存在固定模式等方面的信息描述方式如下所示: \[ W\cdot B^{-1}\cdot u_t=\eta_t \] 这里\(u_t\)代表未经调整前的一般误差矢量而经过上述公式映射后的结果即成为新的标准化正交白噪声源集合{\(\eta_i\)}_[^3]. 以下是Python环境下利用statsmodels库实现的一个简单例子演示如何创建并估算基本型别的SVAR架构实例代码片段供参考学习用途仅限于此场景之外不得随意挪作他用以免引起版权纠纷等问题发生. ```python import numpy as np import pandas as pd from statsmodels.tsa.api import VAR, SVAR from statsmodels.tsa.stattools import adfuller # 假设已加载好训练集df_train包含多个连续观测期记录组成的DataFrame对象 adf_results = {col:adfuller(df_train[col])[1] for col in df_train.columns} print("ADF Test Results:", adf_results) if any([pval>0.05 for pval in adf_results.values()]): print("Some series are non-stationary! Applying log-diff transformation...") df_transformed = np.log(df_train).diff().dropna() else: df_transformed = df_train model_var = VAR(df_transformed) selected_lag = model_var.select_order(10).aic print(f"Optimal lag order based on AIC is {selected_lag}") var_fit = model_var.fit(maxlags=selected_lag) svar_a = [[1, 0], ['a', 'b']] # Example restrictions matrix A svar_b = [['c', 'd'], [0, 1]] # Example restrictions matrix B svar_model = SVAR(var_fit.endog, svar_a=svar_a, svar_b=svar_b) result_svar = svar_model.fit(method='ml') print(result_svar.summary()) ``` ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值