分类
- 内部排序:指将需要处理的所有数据都加载到内存中进行排序。内部排序大致包括:插入排序(直接插入排序、希尔排序),选择排序(简单选择排序、堆排序),交换排序(冒泡排序、快速排序),归并排序,基数排序。
- 外部排序:数据量过大,无法全部加载到内存中,需要借助外部存储进行排序。
时间复杂度
用来衡量算法执行的时间。
一般有两种方法:
- 事后统计法:有两个缺点,一是要想对设计的算法的运行性能进行评测,需要实际运行该程序;二是所得时间的统计量依赖于计算机的硬件、软件等环境因素,这种方式,要在同一台计算机的相同状态下运行,才能比较哪个算法速度更快。
- 事前估算:通过分析某个算法的时间复杂度来判断哪个算法更优。
时间频度
一个算法的耗时与算法中语句的执行次数成正比,即语句的执行次数越多,算法花费的时间就越长。一个算法的语句执行次数称为语句频度或时间频度。记为T(n)。
int total = 0;
int end = 100;
for(int i=1; i<=end; i++){
total+=i;
}
T(n) = n+1;
total = (1+end)*end/2;
T(n) = 1;
T(n)=2n+20 | T(n)=2n | T(n)=3n+10 | T(n)=3n | |
---|---|---|---|---|
1 | 22 | 2 | 13 | 3 |
2 | 24 | 4 | 16 | 6 |
5 | 30 | 10 | 25 | 15 |
8 | 36 | 16 | 34 | 24 |
15 | 50 | 30 | 55 | 45 |
30 | 80 | 60 | 100 | 90 |
100 | 220 | 200 | 310 | 300 |
300 | 620 | 600 | 910 | 900 |
结论
- 2n+20和2n随着n变大,执行曲线无限接近,20可以忽略。
- 3n+10和3n随着n变大,执行曲线无限接近,10可以忽略。
换成高次幂也是一样,换句话来说,随着n的变大,高次项的值的增长完全大于低次项的增长了,这时可以忽略低次项。
时间复杂度
一般情况下,算法中的基本操作语句的重复执行次数是问题规模n的某个函数,用T(n)表示,若有某个辅助函数f(n),使得当n趋近于无穷大时,T(n)/f(n)的极限值为不等于零的常数,则称f(n)是T(n)的同数量级函数。记作T(n)=O(f(n)),称O(f(n))为算法的渐进时间复杂度,简称时间复杂度。
计算时间复杂度的方法
T(n)=n^2+7n+6
- 用常数1代替时间频度中的所有加法常数T(n)=n^2+7n+6 => T(n)=n^2+7n+1
- 修改后的运行次数函数中,只保留最高阶项 T(n)=n^2
- 去除最高阶项的系数。
常见的时间复杂度由小到大依次是:
O(1)<O(以2为底n的对数)<O(n)<O(n倍以2为底n的对数)<O(n^2)< O(n^3)< O(n^k) < O(2^n)。
空间复杂度
- 一个算法的空间复杂度定义为该算法所耗费的存储空间,它也是问题规模n的函数。
- 空间复杂度是对一个算法在运行过程中临时占用存储空间大小的量度。有的算法需要占用的临时工作单元数与解决问题的规模n有关,它随着n的增大而增大,当n较大时,将占用较多的存储单元,例如快速排序和归并排序算法就属于这种情况。