今天为大家推荐一套搭建自用AI大模型平台的方法,希望能帮助各位利用这款工具构建自己使用的开源大模型平台。
推荐工具:Ollama + Open webUI
Ollama是一款大模型程序装载运行工具,可以用来下载运行各种开源大模型程序。
Open web是一种可扩展、功能丰富、用户友好的自托管web,旨在完全离线运行。它支持各种LLM运行程序,包括与Ollama和openai兼容的api。
安装Ollama
github地址:
https://github.com/ollama/ollama star:74.2k
1、安装ollama应用程序
有以下两种方式任选其一:
(1)$ curl -fsSL https://ollama.com/install.sh | sh
(2)$ sudo curl -L https://ollama.com/download/ollama-linux-amd64 -o /usr/bin/ollama
2、配置开机启动
(1)创建服务文件:
$ vim/etc/systemd/system/ollama.service
👇内容如下:
[Unit]Description=Ollama Service
After=network-online.target
[Service]ExecStart=/usr/bin/ollama serve
User=rootGroup=root
Restart=alwaysRestartSec=3
Environment=“OLLAMA_HOST=0.0.0.0” //api开启所有
[Install]``WantedBy=default.target
(2)启用并启动服务:
$ sudo systemctl daemon-reload
$ sudo systemctl enable ollama
$ sudo systemctl start ollama
安装Open web
github地址:
https://github.com/open-webui/open-webui/tree/main star:28.2k
#安装步骤#
1、webui与Ollama放在同一台服务器上
本机docker访问不了127.0.0.1:11434的问题,配置–network=host,访问localhost:8080👇
$ docker run -d --network=host -v open-webui:/app/backend/data -e OLLAMA_BASE_URL=http://127.0.0.1:11434 --name open-webui --restart always ghcr.io/open-webui/open-webui:main
2、webui与Ollama不在同一台服务器上
修改OLLAMA_BASE_URL参数指向Ollama服务器地址👇
$ docker run -d -p 3000:8080 -e OLLAMA_BASE_URL=https://example.com -v open-webui:/app/backend/data --name open-webui --restart always ghcr.io/open-webui/open-webui:main
3、使用gpu运行
$ docker run -d -p 3000:8080 --gpus all --add-host=host.docker.internal:host-gateway -v open-webui:/app/backend/data --name open-webui --restart always ghcr.io/open-webui/open-webui:cuda
4、只使用openai的API,不用ollama
$ docker run -d -p 3000:8080 -e OPENAI_API_KEY=your_secret_key -v open-webui:/app/backend/data --name open-webui --restart always ghcr.io/open-webui/open-webui:main
5、webui与ollama绑定一起
➡️gpu
$ docker run -d -p 3000:8080 --gpus=all -v ollama:/root/.ollama -v open-webui:/app/backend/data --name open-webui --restart always ghcr.io/open-webui/open-webui:ollama
➡️cpu
$ docker run -d -p 3000:8080 -v ollama:/root/.ollama -v open-webui:/app/backend/data --name open-webui --restart always ghcr.io/open-webui/open-webui:ollama
⚠️注意:
-
8GB内存只能跑7B的模型
-
16GB内存能跑13B的模型
-
32GB可以跑33B的模型
使用手册
1、访问:http://xxxx:8080/,首次登录需要创建个人账号
2、拉取ollama library大模型
3、输入要拉取模型标签
如果不清楚有哪些模型标签可以点击“点击这里”进行查看,这里会列出所有ollama库的大模型,选取一个自己心仪的。
👆点击这里位置
👆模型列表
👆其他模型
4、下载开源AI模型
5、开启你的模型探索之旅
通过以上步骤,你就可以搭建一个自用的AI大模型平台。Ollama提供了大模型程序的下载和运行支持,Open WebUI提供了用户友好的界面和扩展功能。无论是将两者部署在同一台服务器上,还是分开部署,都能满足你的需求。建议根据你的硬件配置选择合适的模型大小,确保平台能够稳定运行。如果你对基于开源AI大模型应用的开发感兴趣,也可以在下方留言一起沟通讨论。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。