过河卒

【题目描述】
棋盘上A点有一个过河卒,需要走到目标B点。卒行走的规则:可以向下、或者向右。同时在棋盘上的某一点有一个对方的马(如C点),该马所在的点和所有跳跃一步可达的点称为对方马的控制点,如图3-1中的C点和P1,……,P8,卒不能通过对方马的控制点。棋盘用坐标表示,A点(0,0)、B点(n, m) (n,m为不超过20的整数),同样马的位置坐标是需要给出的,C≠A且C≠B。现在要求你计算出卒从A点能够到达B点的路径的条数。

在这里插入图片描述

【输入】
给出n、m和C点的坐标。

【输出】
从A点能够到达B点的路径的条数。

【输入样例】
8 6 0 4【输出样例】
1617
思路 用每个点的值表示路径数目,找出点与点的关系。
本题用递推法较为容易,用递归也能做出,但较为麻烦,本题关键在于找出每个点与之上面的点与左面的点的关系(卒只能向下或向右),然后找出马点(马与马的控制点)对点的值的影响,特别是马点在边界时对边界上点的影响(易忽略),以及马点的越界问题的处理。

#include <iostream>
#include<iomanip>
#define ll long long
using namespace std;
int main()
{
    ll a[21][21]={0};
    int c,cc;
    int m,n;
    cin>>n>>m;
    for(int i=0;i<21;i++)
        for(int t=0;t<21;t++)
    {
        a[0][t]=1;
        a[i][0]=1;
    }
    cin>>c>>cc;
        a[c][cc]=-1;
        if(c>=1&&cc>=2) a[c-1][cc-2]=-1;
        if(c+1<=20&&cc+2<=20) a[c+1][cc+2]=-1;
        if(c+1<=20&&cc>=2) a[c+1][cc-2]=-1;
        if(c>=1&&cc+2<=20) a[c-1][cc+2]=-1;
        if(c+2<=20&&cc>=1) a[c+2][cc-1]=-1;
        if(c+2<=20&&cc+1<=20) a[c+2][cc+1]=-1;
        if(c>=2&&cc+1<=20) a[c-2][cc+1]=-1;
        if(c>=2&&cc>=1) a[c-2][cc-1]=-1;//处理马点越界问题
    for(int i=0;i<21;i++)
    {
        if(a[0][i]==-1)
            {for(int t=i;t<21;t++)
        {
            a[0][t]=-1;
        }
        break;
            }
    }
    for(int i=0;i<21;i++)
      {
          if(a[i][0]==-1)
            {
                for(int t=i;t<21;t++)
                {
                    a[t][0]=-1;
                }
                break;
            }
    }//处理马点在边界时的问题

  /*  for(int i=0;i<21;i++)
        {for(int t=0;t<21;t++)
    {
        cout<<setw(4)<<a[i][t];
    }
    cout<<endl;
        }*/
    for(int i=0;i<=n;i++)//可以在一个数组中进行也可以再加一个数组辅助判断。
    for(int t=0;t<=m;t++)
    {
        if(a[i][t]==1) continue;
        else if(a[i][t]==0) a[i][t]=a[i-1][t]+a[i][t-1];
        else if(a[i][t]==-1) a[i][t]=0;
    }
    //cout<<endl;
   /* for(int i=0;i<21;i++)
       {

       for(int t=0;t<21;t++)
    {
        cout<<setw(4)<<a[i][t];
    }
    cout<<endl;
       }*/
    cout<<a[n][m];
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值