复杂度分析

n表示数据规模
Of(n) 表示运行算法所需执行的指令数,和f(n)成正比。

复杂度指令数
寻找数组中的最大/最小值O(n)所执行指令数:a*n
二分查找法Of(logn)所执行指令数:b*logn
选择排序算法O(n^2)所需指令数:c*nlogn
归并排序算法O(nlogn)所需指令数:d*nlogn

注意:表中的a、b、c、d是一个常数

时间复杂度分析:

public class TimeComplexityAnalysis {
	public static void main(String args[]) {
		for(int x = 1;x <= 9;x ++) {
			int n = (int)(Math.pow(10, x));
			long startTime = System.currentTimeMillis();
			long sum = 0;
			for(int i = 0;i < n;i ++)
				sum += i;
			long endTime = System.currentTimeMillis();
			System.out.println("sum="+sum);
			System.out.println("10^"+x+":"+(endTime-startTime)+"ms");
			System.out.println();
		}
	}
}

如果要在1s之内解决问题:
O(n^2) 的算法可以处理大约10^4级别的数据;
O(n)的算法可以处理大约10^8级别的数据;
O(nlogn) 的算法可以处理大约10^7级别的数据;

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值