- 博客(351)
- 资源 (20)
- 问答 (1)
- 收藏
- 关注
原创 【具身智能利器】NVIDIA Isaac Sim 仿真平台体验测评
通过其高度可定制的特性、丰富的数据生成和处理工具,以及在真实动态环境中的应用验证,为机器人研究提供了一个强大的平台。通过高效的 GPU 加速、直观的用户界面、模块化设计和丰富的社区支持,Isaac Sim 为研究人员和开发者提供了一个强大的工具,加速了机器人和 AI 应用的开发和测试过程。NVIDIA Isaac Sim 作为一个强大的模拟平台,不仅提供了高质量的视觉效果和精确的物理模拟,还通过丰富的传感器支持、模块化设计和强大的计算能力,为学术研究提供了全面的支持。这有助于提高仿真的真实性和可靠性。
2024-11-13 23:19:24
50100
23
原创 如何使用 ChatGPT 进行编码和编程
ChatGPT 是一个强大的工具,可以满足许多不同的领域,具体取决于每个人的需求和经验水平。从编码助手到模拟终端,它足够灵活,可以承担大量角色并按照合适的标准执行它们。这使得使用 ChatGPT 进行编码和编程成为一个好主意。另一点值得注意的是,作为人工智能技术的一部分,ChatGPT 一直在成长和学习。它现在能做的事情可能只是几年后将能做的事情的一小部分。这就是为什么程序员应该密切关注软件并看看它会演变成什么。
2024-03-26 23:42:00
5632
原创 Open AI 的 Sora 是什么?它是如何工作的?应用场景、风险、替代方案、未来意义等
探索 OpenAI 的 Sora:一种突破性的文本到视频 AI,将在 2024 年彻底改变多模态人工智能。探索其功能、创新和潜在影响。OpenAI 最近宣布了其最新的突破性技术——Sora。到目前为止,这种文本到视频的生成人工智能模型看起来令人难以置信,为许多行业带来了巨大的潜力。
2024-02-21 20:52:04
5319
1
原创 [ROS 系列学习教程] 关于ROS的网络通讯方式TCP/UDP
*TCP是面向连接的、可靠的流协议,提供超时重发,丢弃重复数据,检验数据,流量控制等功能,保证数据能从一端传到另一端。UDP协议就相当于是写信给对方,寄出去信件之后不能知道对方是否收到信件,信件内容是否完整,也不能得到及时反馈,而TCP协议就像是打电话,你需要知道对方的号码才能打电话,交流的内容可以实时反馈,确保信息的完整性。TCP传输数据稳定可靠,适用于对网络通讯质量要求较高的场景,需要准确无误的传输给对方,比如,传输文件,发送邮件,浏览网页等等。TCP是健壮的,可靠的,并保证以相同的顺序传递数据包。
2023-11-04 21:26:18
6943
1
原创 [Qt 教程之Widgets模块] —— QGridLayout栅格布局
与`QBoxLayout`只能在一个方向布局不同,`QGridLayout`可以在网格中布局(垂直和水平两个方向)。
2023-02-12 16:51:38
25749
4
原创 [Qt 教程之开始的开始] —— qrc资源文件介绍与使用
Qt工程分组中,除了`Headers`、`Sources`、`Forms`外,还有一个文件夹`Resources`,只有当工程中有图片、音频等资源文件时才会用到。
2022-09-25 08:25:45
17416
1
原创 python第三方包离线安装(以matplotlib为例)
一、介绍整篇文章介绍python第三方包离线安装通用方法,单纯离线安装matplotlib,请直接跳到三、离线安装matplotlib我们知道python安装第三方包可以用pip install package 、conda install package 等命令,但实际中总有些不可抗力导致这些命令不能用,这时就需要离线安装第三方包。离线安装包可以在https://pypi.org/https://repo.anaconda.com/pkgs/https://www.lfd.uci.edu
2021-10-14 21:35:07
22242
10
原创 [ROS 系列学习教程] ROS与操作系统版本对应关系
Ubuntu和ROS版本对应关系及官方支持结束时间,加粗的为还在支持的版本。UbuntuROSEnd of Life14.04 LTSindigo lglooApril, 201916.04 LTSKinetic KameApril, 202118.04 LTSMelodic MoreniaMay, 202320.04 LTSNoetic Ninjemys (Recommended)May, 2025...............
2021-08-21 22:56:23
60589
18
原创 常用数据增强方法(基于pytorch)
技术不重要,而是思想。原则:让训练集与测试集更接近关于名称: 数据增强、数据扩增、数据增广 都是他。方法分类:空间位置:如平移色彩:如灰度图、色彩抖动形状:如放射变换上下文场景:如遮挡、填充具体方法:数据中心化数据标准化缩放裁剪旋转翻转填充噪声添加灰度变换线性变换仿射变换亮度、饱和度及对比度变换在深度学习模型的训练过程中,数据扩增是必不可少的环节。现有深度学习的参数非常多,一般的模型可训练的参数量基本上都是万到百万级别,而训练集样本的数量很难有这么多,数据扩增可以扩
2020-11-01 11:50:25
13005
1
原创 梯度下降算法详解(从下山比喻、数学推导到代码实现)
1. 方向导数方向导数:类比于函数的偏导数是函数沿坐标轴方向的变化率,方向导数是函数沿某一射线方向的变化率。定理:如果函数 f(x,y)f(x,y)f(x,y) 在点 P0(x0,y0)P_0(x_0,y_0)P0(x0,y0) 可微分,那么函数在该点沿任一方向 lll 的方向导数存在,且有∂f∂l∣(x0,y0)=fx(x0,y0)cosα+fy(x0,y0)cosβ(1)\left. \frac{\partial f}{\partial l} \right|_{(x_0,y_0)}=
2020-06-04 11:04:55
6870
3
原创 向量的内积外积与其几何意义
一、点乘(内积)有向量 a⃗=(x1,y1),b⃗=(x2,y2)\vec a=(x_1,y_1),\vec b=(x_2,y_2)a=(x1,y1),b=(x2,y2),夹角为 θ\thetaθ,内积为:a⃗⋅b⃗=∣a⃗∣∣b⃗∣cosθ=x1x2+y1y2\vec a \cdot \vec b=|\vec a||\vec b|\cos\theta=x_1x_2 + y_1y_...
2020-04-02 22:45:51
23005
3
原创 豪斯多夫(Hausdorff)距离
转于 https://www.cnblogs.com/xlz10/p/3929119.html一、定义给定欧氏空间中的两点集 A={a1,a2,...},B={b1,b2,...}A= \{a_1,a_2,...\},B= \{b_1,b_2,...\}A={a1,a2,...},B={b1,b2,...} ,豪斯多夫(Hausdorff)距离就是用来衡量这两个点集间的距离。...
2020-03-22 18:12:18
24473
14
原创 Darknet 输出网络结构详解
先来张图一、各列说明1. layer这一列顾名思义,是层名称。数字是层编号,后面是层名称。conv:卷积层。res:shortcut层(跨层连接,借鉴 resnet 而来,所以用res表示)yolo:YOLO层。route:融合层,就是把层进行合并,然后输出到下一层。(后面再仔细讲)upsample:上采样层。2. filters这是对于 conv 来说的,代表过滤器的通道...
2020-01-28 23:14:42
7622
4
原创 Ubuntu关于串口的操作(查看串口信息、串口助手、串口权限)
一、查看本机串口信息1. 串口是否在使用串口在 /dev 目录中,查看串口是否在使用,可以用命令 ls -l /dev/ttyUSB0说明:ls -l:是查看目录的命令,直接用ls或ll也可以。ttyUSB0:是串口名,一般都是tty开头,根据连接设备不同,有的串口名为 ttyS0 ,有的为ttyACM0,后面的0是串口号,按照你的需要改。结果:如果在使用会显示串口文件信息没有...
2019-11-25 18:25:33
65121
3
原创 Python实现isbn查询书籍详细信息
如有错误,请疯狂打脸没关系,希望能够指出来。0. 开始的开始一直想做一个图书漂流软件,最近入手(入坑)了微信小程序,添加图书时需要用到isbn查询书籍信息的API(不用也可以,但用户会非常麻烦,强迫症晚期的我又跳入了isbn查询API的坑),但发现别人的API都很贵,豆瓣也收回了API的使用权,估计是要收费了。所以,与其在坑里苦苦挣扎,不如。。。。再挖一个更大的坑,自己做一个。。。1....
2019-10-14 11:45:43
6164
1
原创 Linux(Ubuntu)系统查看显卡型号
给我的Ubuntu安装显卡驱动时,需要查看显卡型号,因为我的是Windows/Ubuntu双系统,一开始想到的是去windows查看,然后下载驱动,安装成功。方法一、lspci | grep -i vga后来想看一下linux怎么查看显卡型号,搜到命令lspci | grep -i vga,但返回的是一个十六进制数字代码,如下图:遂,继续百度,但都只是说了命令,没解释返回结果什么意思。又......
2019-03-26 16:35:00
184422
16
原创 windows下OpenCV的安装配置部署详细教程
一、简介OpenCV的全称是Open Source Computer Vision Library,是一个跨平台的计算机视觉库。OpenCV是由英特尔公司发起并参与开发,以BSD许可证授权发行,可以在商业和研究领域中免费使用。OpenCV可用于开发实时的图像处理、计算机视觉以及模式识别程序。该程序库也可以使用英特尔公司的IPP进行加速处理。 OpenCV用C++语言编写,它的主要接口也是C+...
2018-08-07 09:09:25
319148
83
原创 ubuntu 更新源详细操作步骤
由于linux系统自带的镜像源都在国外,国内用户下载或更新软件会比较慢,有时是非常慢,所以国内某些机构,如大学,研究院所,就在国内建了linux的镜像源服务器共国内linux用户使用,而我们要使用这些源,就要更改自己linux系统的更新源配置文件,接下来详述更新源操作步骤。1. 首先我们要找到国内的镜像源路径我选择了清华的镜像源,链接如下: https://mirrors.tuna.t
2018-01-22 13:23:33
84959
21
原创 【论文速递】2025年第52周(Dec-21-27)(Robotics/Embodied AI/LLM)
对大型语言模型 (LLM) 中高质量数据的快速增长的需求加剧了对可扩展、可靠且语义丰富的数据准备管道的需求。然而,当前的实践仍然以临时脚本和松散指定的工作流程为主,它们缺乏原则性的抽象,阻碍了可重复性,并且对模型在环数据生成的支持有限。为了应对这些挑战,我们推出了 DataFlow,这是一个统一且可扩展的 LLM 驱动的数据准备框架。DataFlow 采用系统级抽象设计,可实现模块化、可重用和可组合的数据转换,并提供 PyTorch 风格的管道构建 API,用于构建可调试和可优化的数据流。
2026-01-10 19:47:02
1103
原创 【ROS2】服务 Service Hello World 代码示例讲解(Python版)
ROS2建议创建一个 License 文件以说明该功能包的发布许可。hello_world_service_py:自定义功能包名称。编译成功后,会在ros2_learning目录下生成。欢迎大家加QQ群,一起讨论学习:894013891。命令,可以根据包名和节点名,在任何目录执行。ROS2的python版本使用。配置包的构建、分发和安装。
2026-01-05 22:06:21
598
原创 【论文速递】2025年第51周(Dec-14-20)(Robotics/Embodied AI/LLM)
我们提出了 Kling-Omni,这是一个通用生成框架,旨在直接从多模态视觉语言输入合成高保真视频。Kling-Omni 采用端到端的视角,弥合了不同视频生成、编辑和智能推理任务之间的功能分离,将它们集成到一个整体系统中。与脱节的管道方法不同,Kling-Omni 支持各种用户输入,包括文本指令、参考图像和视频上下文,将它们处理成统一的多模式表示,以提供电影质量和高度智能的视频内容创建。为了支持这些功能,我们构建了一个全面的数据系统,作为多模式视频创建的基础。
2026-01-04 18:24:09
1796
原创 【论文速递】2025年第50周(Dec-07-13)(Robotics/Embodied AI/LLM)
我们推出了 Wan-Move,这是一个简单且可扩展的框架,可为视频生成模型带来运动控制。现有的运动可控方法通常存在控制粒度粗和可扩展性有限的问题,导致其输出不足以实际使用。我们通过实现精确和高质量的运动控制来缩小这一差距。我们的核心思想是直接使原始条件特征具有运动感知能力,以指导视频合成。为此,我们首先用密集点轨迹表示对象运动,从而允许对场景进行细粒度控制。然后,我们将这些轨迹投影到潜在空间中,并沿着每个轨迹传播第一帧的特征,生成一个对齐的时空特征图,告诉每个场景元素应该如何移动。
2026-01-04 18:22:05
511
原创 【论文速递】2025年第49周(Nov-30-Dec-06)(Robotics/Embodied AI/LLM)
大型语言模型 (LLM) 通过将自然语言描述直接翻译为功能代码,从根本上改变了自动化软件开发,并通过 Github Copilot (Microsoft)、Cursor (Anysphere)、Trae (ByteDance) 和 Claude Code (Anthropic) 等工具推动商业采用。尽管该领域已经从基于规则的系统显着发展到基于 Transformer 的架构,但在 HumanEval 等基准测试中,性能从个位数提高到超过 95% 的成功率。
2026-01-04 18:19:54
680
原创 【论文速递】2025年第48周(Nov-23-29)(Robotics/Embodied AI/LLM)
内存对于人工智能代理至关重要,但广泛采用的静态内存旨在提前创建可用的内存,不可避免地会遭受严重的信息丢失。为了解决这个限制,我们提出了一种称为通用代理记忆(GAM)的新颖框架。GAM 遵循“即时(JIT)编译”的原则,它专注于在运行时为其客户端创建优化的上下文,同时在离线阶段仅保留简单但有用的内存。为此,GAM 采用了具有以下组件的双重设计。1)存储器,它使用轻量级存储器突出显示关键历史信息,同时在通用页面存储中维护完整的历史信息。
2026-01-04 18:18:41
869
原创 【论文速递】2025年第47周(Nov-16-22)(Robotics/Embodied AI/LLM)
本报告介绍了 Kandinsky 5.0,这是一系列用于高分辨率图像和 10 秒视频合成的最先进的基础模型。该框架包括三个核心模型系列:Kandinsky 5.0 Image Lite - 一系列 6B 参数图像生成模型、Kandinsky 5.0 Video Lite - 快速、轻量级的 2B 参数文本到视频和图像到视频模型,以及 Kandinsky 5.0 Video Pro - 实现卓越视频生成质量的 19B 参数模型。
2026-01-04 18:17:05
826
原创 【论文速递】2025年第46周(Nov-09-15)(Robotics/Embodied AI/LLM)
我们推出 Lumine,这是第一个用于开发多面手智能体的开放配方,能够在具有挑战性的 3D 开放世界环境中实时完成长达数小时的复杂任务。Lumine 采用类人交互范式,在视觉语言模型的支持下,以端到端的方式统一感知、推理和行动。它以 5 Hz 的频率处理原始像素,以产生精确的 30 Hz 键盘鼠标操作,并仅在必要时自适应地调用推理。
2025-12-29 00:04:18
874
原创 【论文速递】2025年第45周(Nov-02-08)(Robotics/Embodied AI/LLM)
用文本思考”和“用图像思考”范式显着提高了大语言模型(LLM)和视觉语言模型(VLM)的推理能力。然而,这些范式具有固有的局限性。(1)图像仅捕捉单个时刻,无法表示动态过程或连续变化;(2)文本和视觉作为不同模态的分离,阻碍了统一的多模态理解和生成。为了克服这些限制,我们引入了“用视频思考”,这是一种利用视频生成模型(例如 Sora-2)在统一时间框架中桥接视觉和文本推理的新范式。为了支持这一探索,我们开发了视频思维基准(VideoThinkBench)。
2025-12-29 00:03:04
904
原创 【论文速递】2025年第44周(Oct-26-Nov-01)(Robotics/Embodied AI/LLM)
现代法学硕士主要通过显式文本生成进行“思考”训练,例如思维链 (CoT),它将推理推迟到训练后,而未充分利用训练前数据。我们提出并开源 Ouro,以递归 Ouroboros 命名,是一系列预训练的循环语言模型 (LoopLM),它通过 (i) 潜在空间中的迭代计算,(ii) 用于学习深度分配的熵正则化目标,以及 (iii) 扩展到 7.7T 令牌,将推理构建到预训练阶段。Ouro 1.4B 和 2.6B 型号具有卓越的性能,在各种基准测试中可与高达 12B SOTA LLM 的结果相媲美。
2025-12-28 23:58:45
1064
原创 【论文速递】2025年第43周(Oct-19-25)(Robotics/Embodied AI/LLM)
测试时间扩展旨在通过添加计算资源来提高大型语言模型 (LLM) 的推理性能。该领域流行的方法是基于采样的测试时间缩放方法,该方法通过在推理过程中为给定输入生成多个推理路径来增强推理。然而,尽管它在实践中取得了成功,但其理论基础仍未得到充分探索。在本文中,我们从置信度估计的角度提供了第一个分析基于采样的测试时间缩放方法的理论框架。基于该框架,我们分析了两种主要范式:自洽和困惑,并揭示了关键局限性:自洽遭受高估计误差,而困惑则表现出巨大的建模误差和估计误差收敛性可能下降。
2025-12-28 23:56:59
625
原创 【TextIn大模型加速器 + 火山引擎】赋能机器人行业分析与VLA研究
TextIn解析引擎正从应用工具演变为研究基础设施,不仅加速了大模型在文档智能领域的研究进展,更重要的是,它通过提供真实、复杂、多样化的文档处理场景,推动了大模型在多模态理解、复杂推理和专业领域应用等方面的根本性突破。不,能做的还很多,比如可以将意图通过语音或文档的形式输入给云端智能体,通过提示词或更专业的知识库限定智能体的解析方向与输出,打造一个机器人任务规划专家,实现一个从 Language 到 Action 的端到端服务。针对下一步的大模型处理,降低了大模型的计算负担,提升了大模型的准确性。
2025-12-28 23:25:47
1540
2
原创 【论文速递】2025年第42周(Oct-12-18)(Robotics/Embodied AI/LLM)
我们提出了 QeRL,一种用于大型语言模型 (LLM) 的量化增强强化学习框架。虽然强化学习对于LLMs的推理能力至关重要,但它是资源密集型的,需要大量的 GPU 内存和较长的部署持续时间。QeRL 通过将 NVFP4 量化与低秩适应 (LoRA) 相结合来解决这些问题,加速 RL 的推出阶段,同时减少内存开销。除了效率之外,我们的研究结果表明,量化噪声会增加策略熵,增强探索,并能够在强化学习期间发现更好的策略。为了进一步优化探索,QeRL 引入了自适应量化噪声(AQN)机制,可在训练期间动态调整噪声。
2025-12-21 22:18:13
853
原创 【论文速递】2025年第41周(Oct-05-11)(Robotics/Embodied AI/LLM)
分层推理模型(HRM)是一种使用两个以不同频率递归的小型神经网络的新颖方法。这种受生物学启发的方法在数独、迷宫和 ARC-AGI 等难题任务上击败了大型语言模型 (LLM),同时使用小模型(27M 参数)对小数据(大约 1000 个示例)进行训练。HRM 对于解决小型网络的难题有着巨大的希望,但它尚未得到很好的理解,并且可能不是最理想的。我们提出了微型递归模型(TRM),这是一种更简单的递归推理方法,它比 HRM 具有更高的泛化能力,同时使用只有 2 层的单个微型网络。
2025-12-21 22:14:50
810
原创 【论文速递】2025年第40周(Sep-28-Oct-04)(Robotics/Embodied AI/LLM)
自约翰·冯·诺依曼和艾伦·图灵以来,计算系统与大脑之间的关系一直是先驱理论家的动力。均匀、无标度的生物网络(例如大脑)具有强大的特性,包括随着时间的推移进行泛化,这是机器学习通向通用推理模型的主要障碍。我们引入了“Dragon Hatchling”(BDH),这是一种新的大型语言模型架构,基于局部相互作用的神经元粒子的无标度生物启发网络。BDH 结合了强大的理论基础和固有的可解释性,而不牺牲类似 Transformer 的性能。BDH 是一种实用、高性能、最先进的基于注意力的状态空间序列学习架构。
2025-12-21 22:09:23
809
原创 【论文速递】2025年第39周(Sep-21-27)(Robotics/Embodied AI/LLM)
我们推出了 Qwen3-Omni,这是一个单一的多模态模型,它首次在文本、图像、音频和视频方面保持了最先进的性能,相对于单模态模型没有任何退化。Qwen3-Omni 的性能与 Qwen 系列中相同尺寸的单模态模型的性能相当,尤其在音频任务方面表现出色。在 36 个音频和视听基准测试中,Qwen3-Omni 在 32 个基准测试中实现开源 SOTA,在 22 个基准测试中实现整体 SOTA,表现优于 Gemini-2.5-Pro、Seed-ASR 和 GPT-4o-Transcribe 等强大的闭源模型。
2025-12-21 22:01:44
750
原创 【论文速递】2025年第38周(Sep-14-20)(Robotics/Embodied AI/LLM)
4D世界建模的领域 - 旨在共同捕获空间几何形状和时间动态 - 近年来,在大规模生成模型和多模式学习的进步驱动下,近年来取得了显着的进步。但是,真正一般的4D世界模型的发展基本上仍然受高质量数据的可用性的限制。现有的数据集和基准通常缺乏支持关键任务(例如4D几何重建,未来预测和摄像机对照视频的生成)所需的动态复杂性,多域多样性和时空注释。为了解决这一差距,我们介绍了Omniworld,这是一种专门为4D世界建模设计的大型,多域的多模式数据集。
2025-12-21 21:59:45
686
原创 【论文速递】2025年第37周(Sep-07-13)(Robotics/Embodied AI/LLM)
后训练语言模型(LMS)具有加固学习(RL)可以增强其复杂的推理能力而无需监督微调,如DeepSeek-R1-Zero所证明的那样。但是,有效利用RL进行LM需要大量的并行化来扩展推断,这引入了非平凡的技术挑战(例如延迟,内存和可靠性)以及不断增长的财务成本。我们提出了群群采样策略优化(SAPO),这是一种完全分散和异步的RL训练后训练算法。SAPO专为异源计算节点的分散网络而设计,每个节点都会管理其自己的策略模型,同时与网络中的其他节点“共享”推出;
2025-12-21 21:58:09
1005
原创 【ROS2】服务 Service Hello World 代码示例讲解(C++版)
其中,使用指定编译系统为hello_world_service_cpp:自定义功能包名称结果如下图:其中,有ROS2建议创建一个 License 文件以说明该功能包的发布许可。可以使用└── src。
2025-12-21 21:45:49
1267
原创 【论文速递】2025年第36周(Aug-31-Sep-06)(Robotics/Embodied AI/LLM)
在软件工程中,大型语言模型(LLM)的采用越来越多,就必须对其生成的代码进行严格的安全评估。但是,现有的基准通常与现实世界中的AI编程方案缺乏相关性,从而使它们不足以评估生产环境中与AI生成的代码相关的实际安全风险。为了解决此差距,我们介绍了A.S.E(AI代码生成安全评估),这是一个存储库级评估基准,旨在密切反映现实世界中的AI编程任务,为评估AI生成的代码的安全性提供了全面可靠的框架。我们对A.S.E领先LLM的评估揭示了几个关键发现。特别是,当前的LLM仍在安全编码方面挣扎。
2025-12-07 19:44:43
951
原创 【论文速递】2025年第35周(Aug-24-30)(Robotics/Embodied AI/LLM)
我们介绍了Internvl 3.5,这是一个新的开源多模型系列,可在Intervl系列中显着提高多功能性,推理能力和推理效率。一个关键的创新是Cascade增强学习(Cascade RL)框架,它通过两个阶段的过程增强了推理:离线RL稳定收敛和在线RL以进行精制对齐。这种粗线至细节的训练策略可实质性地改进下游推理任务,例如MMMU和Mathvista。为了优化效率,我们提出了一个视觉分辨率路由器(VIR),该路由器会动态调整视觉令牌的分辨率而不会损害性能。
2025-12-07 19:42:00
990
原创 【论文速递】2025年第34周(Aug-17-23)(Robotics/Embodied AI/LLM)
自我监督的学习有望消除对手动数据注释的需求,从而使模型能够毫不费力地扩展到大规模的数据集和较大的体系结构。通过不针对特定的任务或领域量身定制,这种训练范式有可能使用单个算法从不同的来源学习视觉表示形式,从自然到航空图像。该技术报告介绍了Dinov3,这是通过利用简单而有效的策略来实现这一愿景的主要里程碑。首先,我们利用仔细的数据准备,设计和优化来扩展数据集和模型大小的好处。其次,我们介绍了一种称为GRAM锚定的新方法,该方法有效地解决了长期训练时间表中已知但未解决的密集特征映射降解的问题。
2025-12-07 19:40:17
2614
机器人建模与仿真 URDF 建模实践代码
2024-05-15
[ROS 系列学习教程] rosbag 示例代码
2024-03-23
[CMake教程] 使用变量示例代码
2023-08-20
[CMake教程] 引用外部链接库
2023-08-13
[CMake教程] 生成链接库
2023-07-23
[CMake教程] 最简单的CMakeLists.txt - CMake Hello World
2023-07-23
isbn查询书籍详细信息2.5
2020-03-30
cURL工具库及头文件
2022-11-27
The PCI ID Repository v2.0(显卡型号十六进制代码列表)
2019-03-26
The PCI ID Repository V2.2(显卡型号十六进制代码列表)
2022-06-18
[modelnet40数据集] modelnet40_normal_resampled_1.zip(部分)
2020-07-17
点云可视化程序(ply、pcd、txt)
2020-11-05
一键检测 Linux基本系统信息、I/O测试、网速测试 -- superbench.sh
2019-08-26
Image-Processing-Toolbox & isrgb,isind,isbw
2019-07-01
[modelnet40数据集] modelnet40_normal_resampled_2.zip(部分)
2020-07-17
农机化研究期刊投稿格式要求
2019-07-19
C++ Qt 实现鼠标拖动旋转功能
2020-04-04
WS2_32.lib静态链接库及使用方法
2018-04-27
The Hundred-Page Machine Learning Book(百页机器学习书).pdf
2019-01-03
现代控制工程 (第五版)Modern Control Engineering(中文版+英文版+课后答案)
2018-12-31
私有成员函数可以声明为其他类的友元吗?
2021-11-02
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅