Question 1:
有两根不均匀的香,烧完都是一个小时我如何用这两根香用来作为计时15分钟的工具?
Answer:
将第一根香同时点两头,第二根香点一头,当第一根香的两头燃尽时,将第二根香熄灭掉,耗时 30 m i n 30min 30min。此时,下次再使的时候,点燃第二根香两头,燃尽的时候耗时就为 15 m i n 15min 15min。
Question 2:
某日,宾馆里来了三对客人:两个男人、两个女人、还有一对夫妇、他(她)们分别开了三个房间。旅馆的工作人员为了区分它们,分别在三个房间门前挂上“男男”、“女女”和“男女”三个标牌,但是爱开玩笑的服务员却把牌子调换了位置,弄的房间里的人和标牌对不上号。这种情况下,你敲哪一个一个房门,听到里边的一声回答,就能全部识别出三个房间里对应的住客情况?
Answer:
应该敲“男女”的那个门。
因为标牌和门内的人对不上号,因此,只需要敲“男女”的门,如果里面回复是男的,那么就说明了里面是住的两个男人,如果回复为女性,那么就说明了里面居住的是两个女人。只要知道了其中一个,另外两个门即可判断。
Question 3:
有20瓶药丸,其中19瓶装有1克/粒的药丸,剩下一并装有1.1克/粒的药丸。给你一台称重精确的天平,并且只能称重一次,怎么找出比较重的那瓶药丸?
Answer:
思路:常用的天平作为工具使用来进行比较,左右两边的东西的重量,然而这个题目,会直接的运用来称重。那么为什么会想到称重这个问题,Key Point:是因为题目中非常具体的告诉了我们,药丸的质量,而不是简单地说了一句,有一个比较重。
从第一个药瓶里面拿出1粒药丸,第二个药瓶里面拿出2粒药丸,以此类推。然后对拿出来的药丸总体称重,如果每一粒药丸都重
1
g
1g
1g,那么药丸的总体质量就应该为
(
1
+
20
)
∗
20
/
2
=
210
g
(1+20)*20/2=210g
(1+20)∗20/2=210g,但是称重就可以发现误差,根据称重误差的多少,就可以判断出哪瓶药的重量较大。例如,如果称重出来为
211
g
211g
211g,那么就比预期的多了
1
g
1g
1g,
1
/
0.1
=
10
1/0.1=10
1/0.1=10,说明多了10粒偏重的药丸,因此可以得出:第10瓶药瓶就是重量为
1.1
g
/
1.1g/
1.1g/粒的药丸
Question 4:
你让农民为你工作7天,给他的回报是一条金条,金条平分成相连的七段,你必须在每天结束时给他们一段金条,如果只许你截断金条两次,你如何保证农民每天都能领到相应的报酬?
Answer:
题目不用想太多,已经平分成了相连的七段,如果截断两次,就直接把它分成1段,2段,4段的组合。
天数 | 交易行为 | 工人手里的金块类型 | 自己手里的金块类型 |
---|---|---|---|
1 | 给工人1段 | 1 | 2、4 |
2 | 给工人2段,并收回给工人的1段 | 2 | 1、4 |
3 | 再给工人1段 | 1、2 | 4 |
4 | 给工人4段,并收回给工人的1、2段 | 4 | 1、2 |
5 | 给工人1段 | 1 、4 | 2 |
6 | 给工人2段,并收回给工人的1段 | 2、4 | 1 |
7 | 再给工人1段 | 1、2、4 | - |
Question 5:
请把一盒蛋糕切成8份,分给8个人,但蛋糕盒里还必须留有一份。
Answer:
这个题很简答,反过来看自己想复杂了,很蠢。
把切成的8份蛋糕先拿出7份分给7人,剩下的1份连蛋糕盒一起分给第8个人。
Question 6:
一群人开舞会,每人头上都戴着一顶帽子。帽子只有黑白两种,黑的至少有一顶。每个人都能看到其他人帽子的颜色,却看不到自己的。主持人先让大家看看别人头上戴的是什么帽子,然后关灯,如果有人认为自己戴的是黑帽子,就打自己一个耳光。第一次关灯,没有声音。于是再开灯,大家再看一遍,关灯时仍然鸦雀无声。一直到第三次关灯,才有劈劈啪啪打耳光的声音响起。问有多少人戴着黑帽子?
Answer:
假如只有一个人戴黑帽子,那他看到所有人都戴白帽,在第一次关灯时就应自打耳光,所以应该不止一个人戴黑帽子;如果有两顶黑帽子,第一次两人都只看到对方头上的黑帽子,不敢确定自己的颜色,但到第二次关灯,这两人应该明白,如果自己戴着白帽,那对方早在上一次就应打耳光了,因此自己戴的也是黑帽子,于是也会有耳光声响起;可事实是第三次才响起了耳光声,说明全场不止两顶黑帽,依此类推,应该是关了几次灯,有几顶黑帽。
Question 7:
n人站成一列,一人一个帽子,两种颜色共n个,每人只能看到前面人的帽子,从最后一人依次往前问所戴帽子的颜色.制定一个方案使至少有n-1人答对自己帽子的颜色。
Answer:
假定帽子的颜色是黑白两种。
(在这里的颜色判断主要以黑色为主,白色也是可以的,并不影响)
由于最后一个人能看见前面
n
−
1
\ n-1
n−1个人的帽子颜色,所以也就知道实际前
n
−
1
\ n-1
n−1个人中黑色帽子的个数是奇数还是偶数,如果是奇数,他会回答自己的帽子是白色,如果是偶数则回答黑色,从而保证整个队列的黑色帽子个数是奇数。
第
n
−
1
\ n-1
n−1个人能看见前面
n
−
2
\ n-2
n−2个人的颜色,又听到第
n
\ n
n个人的回答,所以他能正确回答出自己帽子的颜色。
同理第前面的人听见后面的人的回答,又能看见前面更前面的人的颜色所以也能正确回答自己的帽子颜色。
依次类推:前面的
n
−
1
\ n-1
n−1个人都能正确回答自己帽子的颜色,最后面的人不能。