大家好🙌!我是你们的好朋友,大数据老虾😀。相遇是缘,既然来了就拎着小板凳坐下来一起唠会儿😎,如果在文中有所收获,请别忘了一键三连,你的鼓励,是我创作的动力😁,废话不多说,直接开干😎
先别急着走,文末干货,记得拎着小板凳离开的时候也给它顺走🤣
二叉树的中序遍历
题目
给定一个二叉树的根节点root,返回它的中序遍历。
示例1:
input:root = [1, null, 2, 3]
output:[1, 3, 2]
示例2:
input:root = []
output:[]
示例3:
input:root = [1]
output:[1]
示例4:
input:root = [1, 2]
output:[2. 1]
示例5:
input:root = [1, null. 2]
output:[1, 2]
题解
方法1:递归
解析:
二叉树的中序遍历:按照访问左子树 ----> 根节点 ----> 右子树的方式遍历这棵树,在访问左子树或者右子树的时候按照统一的方式进行遍历,直到遍历完整棵树。
1、定义 inorder(root) 表示当前遍历到root 节点的结果
2、递归调用 inorder(root.left) 来遍历root 节点的左子树,然后将root 节点的值加入答案,再递归调用inorder(root.right) 来遍历root 节点的右子树即可,递归终止的条件为碰到空节点。
class Solution{
public List<Ingeter> InorderTraversal(TreeNode root){
List<Ingeter> res = new ArrayList<Ingeter>();
inorder(root, res);
return res;
}
public void inorder(TreeNode root, List<Ingeter> res){
if (root == null){
return;
}
inorder(root. left, res);
res.add(root, val);
inorder(root.right, res);
}
}
复杂度分析
- 时间复杂度:O(n),其中n为二叉树节点的个数。二叉树的遍历中每个节点会被访问一次且只会被访问一次。
- 空间复杂度:O(n),空间复杂度取决于递归的栈深度,而栈深度在二叉树为一条链的情况下,会达到O(n)的级别。
方式2:迭代
class Solution {
public List<Integer> inorderTraversal(TreeNode root) {
List<Integer> res = new ArrayList<Integer>();
Deque<TreeNode> stk = new LinkedList<TreeNode>();
while (root != null || !stk.isEmpty()) {
while (root != null) {
stk.push(root);
root = root.left;
}
root = stk.pop();
res.add(root.val);
root = root.right;
}
return res;
}
}
复杂度分析
-
时间复杂度:O(n),其中 n 为二叉树节点的个数。二叉树的遍历中每个节点会被访问一次且只会被访问一次。
-
空间复杂度:O(n)。空间复杂度取决于栈深度,而栈深度在二叉树为一条链的情况下会达到 O(n) 的级别。
文末彩蛋🤩
找资料很累吧,别急客官,俺统统安排上。程序员不可缺少的书籍,程序员经典名言:"收藏了就等于学会啦"
图灵程序丛书300+
Linux实战100讲
Linux书籍
计算机基础硬核总结
计算机基础相关书籍
操作系统硬核总结
Java自学宝典
Java学习资料
Java硬核资料
Java面试必备
Java面试深度剖析
阿里巴巴Java开发手册
MySQL入门资料
MySQL进阶资料
深入浅出的SQL
Go语言书籍
我的个人仓库:私人仓库