华为OD题目: 最大单入口空闲区域

package com.sf.ccmas.video.config.odd.od6;

import java.util.ArrayList;
import java.util.List;
import java.util.Scanner;

/**
 * 题目描述:   最大单入口空闲区域
 * 给定一个 m xn 的矩阵,由若干字符 和0构成,X表示该处已被占据,0"表示该处空闲,请找到最大的单入口空闲区域.
 * 解释:
 * 空闲区域是由连通的O组成的区域,位于边界的0可以构成入口,单入口空闲区域即 有目只有一个位于边界的0作为入口的由连通的'O"组成的区域。
 * 如果两个元素在水平或垂直方向相邻,则称它们是“连通”的。
 * 输入描述:
 * 第一行输入为两个数字,第一个数字为行数m,第二个数字列数n,两个数字以空格分隔,1 <= m,n <= 200,剩余各行为矩阵各行元素,元素为'X' 或O,各元素间以空格分隔。
 * <p>
 * 输出描述
 * 若有唯一符合要求的最大单入口空闲区域,输出三个数字,第一个数字为入口行坐标(范围为0-行数-1),第二个数字为入口列坐标(范围为0~列数-1) ,
 * 第三个数字为区域大小,三个数字以空格分隔;
 * 若有多个符合要求的最大单入口空闲区域,输出一个数字,代表区域的大小;
 * 若没有,输出NULL。
 * <p>
 * 示例1
 * 输入:
 * 4 4
 * X X X X
 * X O O X
 * X O O X
 * X O X X
 * <p>
 * 输出:
 * <p>
 * 3 1 5
 * 说明:
 * 存在最大单入口区域,入口行坐标3,列坐标1,区域大小5
 * <p>
 * 示例2
 * 输入:
 * <p>
 * 4 5
 * X X X X X
 * O O O O X
 * X O O O X
 * X O X X O
 * <p>
 * 输出:
 * <p>
 * 3 4 1
 * <p>
 * 说明:
 * 存在最大单入口区域,入口行坐标3,列坐标4,区域大小1
 * <p>
 * 示例3
 * 输入:
 * 5 4
 * X X X X
 * X O O O
 * X O O O
 * X O O X
 * X X X X
 * <p>
 * 输出:
 * NULL
 * <p>
 * 说明:
 * 不存在最大单入口区域
 * <p>
 * 示例4
 * 输入:
 * <p>
 * 5 4
 * X X X X
 * X O O O
 * X X X X
 * X O O O
 * X X X X
 * <p>
 * 输出:
 * 3
 * 说明:
 * 存在两个大小为3的最大单入口区域,两个入口横纵坐标分别为1,3和3,3
 */

public class Search {
    //解题方法:双指针法, 题目要求返回下标最大的字串,可以用倒序遍历字符串,返回第一个结果
    static int m = 0;
    static int n = 0;
    //入口的坐标信息,如果存在入口,只能是单入口,所以一个长度为2的数组即可
    static int[] entryInfo=new int[2];
    //入口统计,方便筛选单入口信息
    static int count = 0;
    //最大的区域数量
    static int max = 0;

    public static void main(String[] args) {
        Scanner sc = new Scanner(System.in);

        String numLine = sc.nextLine();
        String[] split = numLine.split(" ");
        m = Integer.parseInt(split[0]);
        n = Integer.parseInt(split[1]);
        String[][] area = new String[m][n];
        for (int i = 0; i < m; i++) {
            String line = sc.nextLine();
            String[] array = line.split(" ");
            area[i] = array;
        }
        //最大重复单入口标志位
        boolean repeatedMaxFlag = false;
        boolean hasEntryArea = false;
        for (int i = 0; i < m; i++) {
            for (int j = 0; j < n; j++) {
                if (area[i][j].equals("O")) {
                    //O 的区域个数
                    int areaNum = dfs(area, i, j);
                    if (areaNum == 0) {
                        continue;
                    }
                    //如果是单入口
                    if (count == 1) {
                        hasEntryArea = true;
                        if (areaNum > max) {
                            max = areaNum;
                            repeatedMaxFlag = false;
                        } else if (areaNum == max) { //跟上一个相同
                            repeatedMaxFlag = true;
                        }
                    }
                    //处理完后,记得清除count 标志位
                    count = 0;
                }
            }
        }
        //如果没有单入口区域
        if (!hasEntryArea) {
            System.out.println("NULL");
            return;
        }
        //如果存在单入口区域,看是否有重复的最大单入口区域,如果有,直接输出区域值
        if (repeatedMaxFlag) {
            System.out.println(max);
        }else {
            System.out.println(entryInfo[0] + " " + entryInfo[1] + " " + max);
        }

    }

    /**
     * * 5 4
     *  * X X X X
     *  * X O O O
     *  * X X X X
     *  * X O O O
     *  * X X X X
     *  * <p>
     *  * 输出:
     *  * 3
     *  返回数量
     */
    public static int dfs(String[][] area, int x, int y) {
        //递归出口, 如果超出边界或者不是 “O”,直接退出
        if (x < 0 || x >= m || y < 0 || y >= n) {
//            System.out.println(" 退出坐标为 x=" + x + " y=" + y);
            return 0;
        }
        if (!area[x][y].equals("O")) {
            return 0;
        }
        //记录边界入口
        if (x == 0 || x == m - 1 || y == 0 || y == n - 1) {
            //入口统计
            count++;
            //获取入口坐标信息
            entryInfo[0]=x;
            entryInfo[1]=y;
        }
        area[x][y] = "X";
//        System.out.println(" 当前坐标: x=" + x + " y=" + y);
        int up = dfs(area, x - 1, y);
        int down = dfs(area, x + 1, y);
        int left = dfs(area, x, y - 1);
        int right = dfs(area, x, y + 1);
        return 1 + up + down + left + right;
    }
}
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值