数据结构之线性表(顺序表,链表)

1.线性表的特征:

数据元素之间具有一种“一对一”的逻辑关系。

  1. 第一个数据元素没有前驱,这个数据元素被称为头结点;

  2. 最后一个数据元素没有后继,这个数据元素被称为尾结点;

  3. 除了第一个和最后一个数据元素外,其他数据元素有且仅有一个前驱和一个后继。

如果把线性表用数学语言来定义,则可以表示为:

(a1,…ai-1,ai,ai+1,…an),ai-1领先于ai,ai领先于ai+1,称ai-1是ai的前驱元素,ai+1是ai的后继元素.

img

2.线性表的分类:

线性表中数据存储的方式可以是顺序存储,也可以是链式存储, 按照数据的存储方式不同,可以把线性表分为顺序表链表

2.1 顺序表

顺序表是在计算机内存中以数组的形式保存的线性表, 线性表的顺序存储是指用一组地址连续的存储单元,依次存储线性表中的各个元素、使得线性表中再逻辑结构 上响铃的数据元素存储在相邻的物理存储单元中,即通过数据元 素物理存储的相邻关系来反映数据元素之间逻辑上的相邻关系。

在这里插入图片描述

2.1.1顺序表的实现

顺序表API设计:

在这里插入图片描述

顺序表的代码实现:

//顺序表代码
public class SequenceList<T>{
    //存储元素的数组
    private T[]else;
    //记录当前顺序表中元素个数
    private int N;
    //构造方法
    public SequenceList(int capacity){
        else = (T[]) new Object[capacity];
               N = 0;   
    }
    //将一个线性表置空
    public void clear(){
        N = 0;
        
    }
     //判断当前线性表是否为空表
    public boolean isEmpty(){
        return N==0;
    }
    //获取线性表的长度
    public int length(){
        return N;
    }
    //读取并返回线性表中的第i个元素的值
   public T get(int i){
        if (i<0 || i>=N){
            throw new RuntimeException("当前元素不存在!");
        }
        return eles[i];
    }
    //在线性表的第i个元素之前插入一个值为t的数据元素
     public void insert(int i,T t){
         if(i == else.length){
             throw new RuntimeException("当前表已满");  
         }
         if(i < 0 || i > N){
             throw new RuntimeException("插入的位置不合法");
         }
         //把i的位置空出来 i位置及以后的元素依次向后移动一位
         for(int index = N; index > i; index--){
             else[index] = else[index - 1];
         }
         //把t放到i位置处
        eles[i]=t;
        //元素数量+1
       	N++; 
     }
    //删除指定位置i处的元素,并返回该元素
    public T remove(int i){
        if(i < 0 || i > N - 1){
            throw new RuntimeException("当前要删除的元素不存在"); 
        }
        //记录i位置处的元素
        T result = eles[i];
       //把i位置后面的元素都向前移动一位
        for (int index=i;index<N-1;index++){
            eles[index]=eles[index+1];
        }
		//当前元素数量-1
        N--;
        return result;
    }
     //查找t元素第一次出现的位置,若不存在返回-1
    public int indexOf(T t){
        if(t == null){
            throw new RuntimeException("查找的元素不合法");
        }
        for (int i = 0; i < N; i++) {
            if (eles[i].equals(t)){
                return i;
            }
        }
        return -1;    public int indexOf(T t){
        if(t==null){
            throw new RuntimeException("查找的元素不合法");
        }
        for (int i = 0; i < N; i++) {
            if (eles[i].equals(t)){
                return i;
            }
        }
        return -1;
    }
}
2.1.2顺序表的遍历

一般作为容器存储数据,都需要向外部提供遍历的方式,因此我们需要给顺序表提供遍历方式。
在java中,遍历集合的方式一般都是用的是foreach循环,如果想让我们的SequenceList也能支持foreach循环,则
需要做如下操作:

  1. SequenceList实现Iterable接口,重写iterator方法;
  2. SequenceList内部提供一个内部类SIterator, 实现Iterator接口,重写hasNext方法和next方法;
//顺序表代码
import java.util.Iterator;
public class SequenceList<T> implements Iterable<T>{
    //存储元素的数组
    private T[] eles;
    //记录当前顺序表中的元素个数
    private int N;
    //构造方法
    public SequenceList(int capacity){
        eles = (T[])new Object[capacity];
        N=0;
    }
    //将一个线性表置为空表
    public void clear(){
        N=0;
    }
    //判断当前线性表是否为空表
    public boolean isEmpty(){
        return N==0;
    }
    //获取线性表的长度
    public int length(){
        return N;
    }
    //获取指定位置的元素
    public T get(int i){
        if (i<0 || i>=N){
            throw new RuntimeException("当前元素不存在!");
        }
        return eles[i];
    }
    //向线型表中添加元素t
    public void insert(T t){
        if (N==eles.length){
            throw new RuntimeException("当前表已满");
        }
        eles[N++] = t;
    }
    //在i元素处插入元素t
    public void insert(int i,T t){
        if (i==eles.length){
            throw new RuntimeException("当前表已满");
        }
        if (i<0 || i>N){
            throw new RuntimeException("插入的位置不合法");
        }
        //把i位置空出来,i位置及其后面的元素依次向后移动一位
        for (int index=N;index>i;index--){
            eles[index]=eles[index-1];
        }
        //把t放到i位置处
        eles[i]=t;
        //元素数量+1
        N++;
    }
    //删除指定位置i处的元素,并返回该元素
    public T remove(int i){
        if (i<0 || i>N-1){
            throw new RuntimeException("当前要删除的元素不存在");
        }
        //记录i位置处的元素
        T result = eles[i];
        //把i位置后面的元素都向前移动一位
        for (int index=i;index<N-1;index++){
            eles[index]=eles[index+1];
        }
        //当前元素数量-1
        N--;
        return result;
    }
    //查找t元素第一次出现的位置,若不存在返回-1
    public int indexOf(T t){
        if(t==null){
            throw new RuntimeException("查找的元素不合法");
        }
        for (int i = 0; i < N; i++) {
            if (eles[i].equals(t)){
                return i;
            }
        }
        return -1;
    }
    
    //遍历当前线性表的元素
    public void showEles(){
        for (int i = 0; i < N; i++) {
            System.out.print(eles[i]+" ");
        }
        System.out.println();
    }
    @Override
    public Iterator iterator() {
        return new SIterator();
    }
    private class SIterator implements Iterator{
        private int cur;
        public SIterator(){
            this.cur=0;
        }
        @Override
        public boolean hasNext() {
            return cur<N;
        }
        @Override
        public T next() {
            return eles[cur++];
        }
    }
}
2.1.3顺序表的容量可变
在之前的实现中,当我们使用SequenceList时,先new SequenceList(5)创建一个对象,创建对象时就需要指定容
器的大小,初始化指定大小的数组来存储元素,当我们插入元素时,如果已经插入了5个元素,还要继续插入数
据,则会报错,就不能插入了。这种设计不符合容器的设计理念,因此我们在设计顺序表时,应该考虑它的容量的
伸缩性。
考虑容器的容量伸缩性,其实就是改变存储数据元素的数组的大小,那我们需要考虑什么时候需要改变数组的大
小?
1.添加元素时:
添加元素时,应该检查当前数组的大小是否能容纳新的元素,如果不能容纳,则需要创建新的容量更大的数组,我们这里创建一个是原数组两倍容量的新数组存储元素。
1
2
3
4
5
6
7
8

在这里插入图片描述

2.移除元素时:
移除元素时,应该检查当前数组的大小是否太大,比如正在
用100个容量的数组存储10个元素,这样就会造成内存
空间的浪费,应该创建一个容量更小的数组存储元素。如果
我们发现数据元素的数量不足数组容量的1/4,则创建
一个是原数组容量的1/2的新数组存储元素。

在这里插入图片描述

顺序表的容量可变代码:

//顺序表代码
public class SequenceList<T> implements Iterable<T>{
//存储元素的数组
private T[] eles;
    //记录当前顺序表中的元素个数
    private int N;
    //构造方法
    public SequenceList(int capacity){
        eles = (T[])new Object[capacity];
        N=0;
    }
    //将一个线性表置为空表
    public void clear(){
        N=0;
    }
    //判断当前线性表是否为空表
    public boolean isEmpty(){
        return N==0;
    }
    //获取线性表的长度
    public int length(){
        return N;
    }
    //获取指定位置的元素
    public T get(int i){
        if (i<0 || i>=N){
            throw new RuntimeException("当前元素不存在!");
        }
        return eles[i];
    }
    //向线型表中添加元素t
    public void insert(T t){
        if (N==eles.length){
            resize(eles.length*2);
        }
        eles[N++] = t;
    }
    //在i元素处插入元素t
    public void insert(int i,T t){
        if (i<0 || i>N){
            throw new RuntimeException("插入的位置不合法");
        }
//元素已经放满了数组,需要扩容
        if (N==eles.length){
            resize(eles.length*2);
        }
//把i位置空出来,i位置及其后面的元素依次向后移动一位
        for (int index=N-1;index>i;index--){
            eles[index]=eles[index-1];
        }
//把t放到i位置处
        eles[i]=t;
//元素数量+1
        N++;
    }
    //删除指定位置i处的元素,并返回该元素
    public T remove(int i){
        if (i<0 || i>N-1){
            throw new RuntimeException("当前要删除的元素不存在");
        }
//记录i位置处的元素
        T result = eles[i];
//把i位置后面的元素都向前移动一位
        for (int index=i;index<N-1;index++){
            eles[index]=eles[index+1];
        }
//当前元素数量-1
        N--;
//当元素已经不足数组大小的1/4,则重置数组的大小
        if (N>0 && N<eles.length/4){
            resize(eles.length/2);
        }
        return result;
    }
    //查找t元素第一次出现的位置
    public int indexOf(T t){
        if(t==null){
            throw new RuntimeException("查找的元素不合法");
        }
        for (int i = 0; i < N; i++) {
            if (eles[i].equals(t)){
                return i;
            }
        }
        return -1;
    }
    //打印当前线性表的元素
    public void showEles(){
        for (int i = 0; i < N; i++) {
            System.out.print(eles[i]+" ");
        }
        System.out.println();
    }
    @Override
    public Iterator iterator() {
        return new SIterator();
    }
    private class SIterator implements Iterator{
        private int cur;
        public SIterator(){
            this.cur=0;
        }
        @Override
        public boolean hasNext() {
            return cur<N;
        }
        @Override
        public T next() {
            return eles[cur++];
        }
    }
    //改变容量
    private void resize(int newSize){
	//记录旧数组
        T[] temp = eles;
	//创建新数组
        eles = (T[]) new Object[newSize];
	//把旧数组中的元素拷贝到新数组
        for (int i = 0; i < N; i++) {
            eles[i] = temp[i];
        }
    }
    public int capacity(){
        return eles.length;
    }
}

//测试代码
public class Test {
    public static void main(String[] args) throws Exception {
        SequenceList<String> squence = new SequenceList<>(5);
//测试遍历
        squence.insert(0, "姚明");
        squence.insert(1, "科比");
        squence.insert(2, "麦迪");
        squence.insert(3, "艾佛森");
        squence.insert(4, "卡特");
        System.out.println(squence.capacity());
        squence.insert(5,"aa");
        System.out.println(squence.capacity());
        squence.insert(5,"aa");
        squence.insert(5,"aa");
        squence.insert(5,"aa");
        squence.insert(5,"aa");
        squence.insert(5,"aa");
        System.out.println(squence.capacity());
        squence.remove(1);
        squence.remove(1);
        squence.remove(1);
        squence.remove(1);
        squence.remove(1);
        squence.remove(1);
        squence.remove(1);
        System.out.println(squence.capacity());
    }
}
2.1.4顺序表的时间复杂度:
  • get(i):不难看出,不论数据元素量N有多大,只需要一次eles[i]就可以获取到对应的元素,所以时间复杂度为O(1);

  • insert(int i,T t):每一次插入,都需要把i位置后面的元素移动一次,随着元素数量N的增大,移动的元素也越多,时间复杂为O(n);

  • remove(int i):每一次删除,都需要把i位置后面的元素移动一次,随着数据量N的增大,移动的元素也越多,时间复杂度为O(n);

由于顺序表的底层由数组实现,数组的长度是固定的,所以在操作的过程中涉及到了容器扩容操作。这样会导致顺序表在使用过程中的时间复杂度不是线性的,在某些需要扩容的结点处,耗时会突增,尤其是元素越多,这个问题越明显.

2.1.5java中ArrayList实现

java中ArrayList集合的底层也是一种顺序表,使用数组实现,同样提供了增删改查以及扩容等功能。

  1. 是否用数组实现;

  2. 有没有扩容操作;

  3. 有没有提供遍历方式;

2.2链表

之前我们已经使用顺序存储结构实现了线性表,我们会发现虽然顺序表的查询很快,时间复杂度为O(1),但是增删的效率是比较低的,因为每一次增删操作都伴随着大量的数据元素移动。这个问题有没有解决方案呢?

有,我们可以使用另外一种存储结构实现线性表,链式存储结构

链表是一种物理存储单元上非连续、非顺序的存储结构,其物理结构不能只管的表示数据元素的逻辑顺序,
数据元素的逻辑顺序是通过链表中的指针链接次序实现的。链表由一系列的结点(链表中的每一个元素称为结点)组成,
结点可以在运行时动态生成。

在这里插入图片描述

结点类实现:

public class Node<T> {
    //存储元素
    public T item;
    //指向下一个结点
    public Node next;
    public Node(T item, Node next) {
        this.item = item;
        this.next = next;
    }
}

生成链表:

    public static void main(String[] args) throws Exception {
//构建结点
        Node<Integer> first = new Node<Integer>(11, null);
        Node<Integer> second = new Node<Integer>(13, null);
        Node<Integer> third = new Node<Integer>(12, null);
        Node<Integer> fourth = new Node<Integer>(8, null);
        Node<Integer> fifth = new Node<Integer>(9, null);
//生成链表
        first.next = second;
        second.next = third;
        third.next = fourth;
        fourth.next = fifth;
    }
2.2.1单向链表

单向链表是链表的一种,它由多个结点组成,每个结点都由 一个数据域和一个指针域组成,数据域用来存储数据, 指针域用来指向其后继结点。链表的头结点的数据域不存 储数据,指针域指向第一个真正存储数据的结点。

在这里插入图片描述

单向链表API设计

在这里插入图片描述

单向链表代码实现
//单向列表代码
import java.util.Iterator;
public class LinkList<T> implements Iterable<T> {
    //记录节点
    private Node head;
    private int N;
    public LinkList(){
        //初始化头节点
        head = new Node(null,null);
        N = 0;
    }
    //清空链表
    public void clear(){
        head.next = null;
        head.item = null;
        N = 0;
    }
    //获取链表长度
    public int length(){
        return N;
    }
    //判断链表是否为空
    public boolean isEmpty(){
        return N==0;
    }
    //读取并返回线性表中第i个元素的值
    public T get(int i){
        if (i<0||i>=N){
            throw new RuntimeException("位置不合法!");
        }
        Node n = head.next;
        for (int index = 0; index < i; index++) {
            n = n.next;
        }
        return n.item;
    }
    //向线性表中加入一个值
     public void insert(T t){
		//找到最后一个节点
        Node n = head;
        while(n.next!=null){
            n = n.next;
        }
        Node newNode = new Node(t, null);
        n.next = newNode;
		//链表长度+1
        N++;
    }
    
    //在线性表的第i个元素之前插入一个值为t的数据元素
    public void insert(int i,T t){
        if (i<0||i>=N){
            throw new RuntimeException("位置不合法!");
        }
		//寻找位置i之前的结点
        Node pre = head;
        for (int index = 0; index <=i-1; index++) {
            pre = pre.next;
        }
		//位置i的结点
        Node curr = pre.next;
		//构建新的结点,让新结点指向位置i的结点
        Node newNode = new Node(t, curr);
		//让之前的结点指向新结点
        pre.next = newNode;
		//长度+1
        N++;
    }
    //删除并返回线性表第i个元素
    public T remove(int i){
        if (i<0 || i>=N){
            throw new RuntimeException("位置不合法");
        }
		//寻找i之前的元素
        Node pre = head;
        for (int index = 0; index <=i-1; index++) {
            pre = pre.next;
        }
		//当前i位置的结点
        Node curr = pre.next;
		//前一个结点指向下一个结点,删除当前结点
        pre.next = curr.next;
		//长度-1
        N--;
        return curr.item;
    }
    //返回首次出现指定元素的位序号,若不存在则返回-1
    public int indexOf(T t){
        Node n = head;
        for (int i = 0;n.next!=null;i++){
            n = n.next;
            if (n.item.equals(t)){
                return i;
            }
        }
        return -1;
    }
    //结点类
    private class Node{
        //存储数据
        T item;
        //下一个结点
        Node next;
        public Node(T item, Node next) {
            this.item = item;
            this.next = next;
        }
    }
    @Override
    public Iterator iterator() {
        return new LIterator();
    }
    private class LIterator implements Iterator<T>{
        private Node n;
        public LIterator() {
            this.n = head;
        }
        @Override
        public boolean hasNext() {
            return n.next!=null;
        }
        @Override
        public T next() {
            n = n.next;
            return n.item;
        }
    }

}
2.2.2双向链表

在这里插入图片描述

结点API设计:

在这里插入图片描述

双向链表API设计:

在这里插入图片描述

双向链表代码实现:
//双向链表代码
import java.util.Iterator;
public class TowWayLinkList<T> implements Iterable<T>{
    //首结点
    private Node head;
    //最后一个结点
    private Node last;
    //链表的长度
    private int N;
    public TowWayLinkList() {
        last = null;
        head = new Node(null,null,null);
        N=0;
    }
    //清空链表
    public void clear(){
        last=null;
        head.next=last;
        head.pre=null;
        head.item=null;
        N=0;
    }
    //获取链表长度
    public int length(){
        return N;
    }
    //判断链表是否为空
    public boolean isEmpty(){
        return N==0;
    }
    //插入元素t
    public void insert(T t){
        if (last==null){
            last = new Node(t,head,null);
            head.next = last;
        }else{
            Node oldLast = last;
            Node node = new Node(t, oldLast, null);
            oldLast.next = node;
            last = node;
        }
//长度+1
        N++;
    }
    //向指定位置i处插入元素t
    public void insert(int i,T t){
        if (i<0 || i>=N){
            throw new RuntimeException("位置不合法");
        }
//找到位置i的前一个结点
        Node pre = head;
        for (int index = 0; index < i; index++) {
            pre = pre.next;
        }
//当前结点
        Node curr = pre.next;
//构建新结点
        Node newNode = new Node(t, pre, curr);
        curr.pre= newNode;
        pre.next = newNode;
//长度+1
        N++;
    }
    //获取指定位置i处的元素
    public T get(int i){
        if (i<0||i>=N){
            throw new RuntimeException("位置不合法");
        }
//寻找当前结点
        Node curr = head.next;
        for (int index = 0; index <i; index++) {
            curr = curr.next;
        }
        return curr.item;
    }
    //找到元素t在链表中第一次出现的位置
    public int indexOf(T t){
        Node n= head;
        for (int i=0;n.next!=null;i++){
            n = n.next;
            if (n.next.equals(t)){
                return i;
            }
        }
        return -1;
    }
    //删除位置i处的元素,并返回该元素
    public T remove(int i){
        if (i<0 || i>=N){
            throw new RuntimeException("位置不合法");
        }
//寻找i位置的前一个元素
        Node pre = head;
        for (int index = 0; index <i ; index++) {
            pre = pre.next;
        }
//i位置的元素
        Node curr = pre.next;
//i位置的下一个元素
        Node curr_next = curr.next;
        pre.next = curr_next;
        curr_next.pre = pre;
//长度-1;
        N--;
        return curr.item;
    }
    //获取第一个元素
    public T getFirst(){
        if (isEmpty()){
            return null;
        }
        return head.next.item;
    }
    //获取最后一个元素
    public T getLast(){
        if (isEmpty()){
            return null;
        }
        return last.item;
    }
    @Override
    public Iterator<T> iterator() {
        return new TIterator();
    }
    private class TIterator implements Iterator{
        private Node n = head;
        @Override
        public boolean hasNext() {
            return n.next!=null;
        }
        @Override
        public Object next() {
            n = n.next;
            return n.item;
        }
    }
    //结点类
    private class Node{
        public Node(T item, Node pre, Node next) {
            this.item = item;
            this.pre = pre;
            this.next = next;
        }
        //存储数据
        public T item;
        //指向上一个结点
        public Node pre;
        //指向下一个结点
        public Node next;
    }
}
//测试代码
public class Test {
    public static void main(String[] args) throws Exception {
        TowWayLinkList<String> list = new TowWayLinkList<>();
        list.insert("乔峰");
        list.insert("虚竹");
        list.insert("段誉");
        list.insert(1,"鸠摩智");
        list.insert(3,"叶二娘");
        for (String str : list) {
            System.out.println(str);
        }
        System.out.println("----------------------");
        String tow = list.get(2);
        System.out.println(tow);
        System.out.println("-------------------------");
        String remove = list.remove(3);
        System.out.println(remove);
        System.out.println(list.length());
        System.out.println("--------------------");
        System.out.println(list.getFirst());
        System.out.println(list.getLast());
    }
}
java中LinkedList实现

java中LinkedList集合也是使用双向链表实现,并提供了增删 改查等相关方法

  1. 底层是否用双向链表实现;
  2. 结点类是否有三个域
链表的复杂度分析
  • get(int i):每一次查询,都需要从链表的头部开始,依次向后查找,随着数据元素N的增多,比较的元素越多,时间复杂度为O(n)

  • insert(int i,T t):每一次插入,需要先找到i位置的前一个元素,然后完成插入操作,随着数据元素N的增多,查找的元素越多,时间复杂度为O(n);

  • remove(int i):每一次移除,需要先找到i位置的前一个元素,然后完成插入操作,随着数据元素N的增多,查找的元素越多,时间复杂度为O(n)

总结:

相比较顺序表,链表插入和删除的时间复杂度虽然一样,但仍然有很大的优势,因为链表的物理地址是不连续的,
它不需要预先指定存储空间大小,或者在存储过程中涉及到扩容等操作,同时它并没有涉及的元素的交换。

相比较顺序表,链表的查询操作性能会比较低。

因此,如果我们的程序中查询操作比较多,建议使用顺序表增删操作比较多,建议使用链表

链表反转
需求:
原链表中数据为:1->2->3>4
反转后链表中数据为:4->3->2->1

反转API:

在这里插入图片描述

使用递归可以完成反转,递归反转其实就是从原链表的第一
个存数据的结点开始,依次递归调用反转每一个结点,
直到把最后一个结点反转完毕,整个链表就反转完毕。
123

在这里插入图片描述

public void reverse(){
        if (N==0){
//当前是空链表,不需要反转
        return;
        }
        reverse(head.next);
        }
/**
 *
 * @param curr 当前遍历的结点
 * @return 反转后当前结点上一个结点
 */
public Node reverse(Node curr){
//已经到了最后一个元素
        if (curr.next==null){
//反转后,头结点应该指向原链表中的最后一个元素
        head.next=curr;
        return curr;
        }
//当前结点的上一个结点
        Node pre = reverse(curr.next);
        pre.next = curr;
//当前结点的下一个结点设为null
        curr.next=null;
//返回当前结点
        return curr;
        }
//测试代码
public class Test {
    public static void main(String[] args) throws Exception {
        LinkList<Integer> list = new LinkList<>();
        list.insert(1);
        list.insert(2);
        list.insert(3);
        list.insert(4);
        for (Integer i : list) {
            System.out.print(i+" ");
        }
        System.out.println();
        System.out.println("--------------------");
        list.reverse();
        for (Integer i : list) {
            System.out.print(i+" ");
        }
    }
}
快慢指针

我们先来看下面一段代码,然后完成需求。

//测试类
public class Test {
    public static void main(String[] args) throws Exception {
        Node<String> first = new Node<String>("aa", null);
        Node<String> second = new Node<String>("bb", null);
        Node<String> third = new Node<String>("cc", null);
        Node<String> fourth = new Node<String>("dd", null);
        Node<String> fifth = new Node<String>("ee", null);
        Node<String> six = new Node<String>("ff", null);
        Node<String> seven = new Node<String>("gg", null);
//完成结点之间的指向
        first.next = second;
        second.next = third;
        third.next = fourth;
        fourth.next = fifth;
        fifth.next = six;
        six.next = seven;
//查找中间值
        String mid = getMid(first);
        System.out.println("中间值为:"+mid);
    }
    /**
     * @param first 链表的首结点
     * @return 链表的中间结点的值
     */
    public static String getMid(Node<String> first) {
        return null;
    }
    //结点类
    private static class Node<T> {
        //存储数据
        T item;
        //下一个结点
        Node next;
        public Node(T item, Node next) {
            this.item = item;
            this.next = next;
        }
    }
}
需求:
请完善测试类Test中的getMid方法,可以找出链表的中间元素值并返回。
利用快慢指针,我们把一个链表看成一个跑道,假设a的速度是b的两倍,那么当a跑完全程后,b刚好跑一半,以
此来达到找到中间节点的目的。
如下图,最开始,slow与fast指针都指向链表第一个节点,然后slow每次移动一个指针,fast每次移动两个指针。

在这里插入图片描述

/**
 * @param first 链表的首结点
 * @return 链表的中间结点的值
 */
public static String getMid(Node<String> first) {
        Node<String> slow = first;
        Node<String> fast = first;
        while(fast!=null && fast.next!=null){
        fast=fast.next.next;
        slow=slow.next;
        }
        return slow.item;
}
单向链表是否有环问题

//测试类
public class Test {
    public static void main(String[] args) throws Exception {
        Node<String> first = new Node<String>("aa", null);
        Node<String> second = new Node<String>("bb", null);
        Node<String> third = new Node<String>("cc", null);
        Node<String> fourth = new Node<String>("dd", null);
        Node<String> fifth = new Node<String>("ee", null);
        Node<String> six = new Node<String>("ff", null);
        Node<String> seven = new Node<String>("gg", null);
//完成结点之间的指向
        first.next = second;
        second.next = third;
        third.next = fourth;
        fourth.next = fifth;
        fifth.next = six;
        six.next = seven;
//产生环
        seven.next = third;
//判断链表是否有环
        boolean circle = isCircle(first);
        System.out.println("first链表中是否有环:"+circle);
    }
    /**
     * 判断链表中是否有环
     * @param first 链表首结点
     * @return ture为有环,false为无环
     */
    public static boolean isCircle(Node<String> first) {
        return false;
    }
    //结点类
    private static class Node<T> {
        //存储数据
        T item;
        //下一个结点
        Node next;
        public Node(T item, Node next) {
            this.item = item;
            this.next = next;
        }
    }
}

需求:
请完善测试类Test中的isCircle方法,返回链表中是否有环。
使用快慢指针的思想,还是把链表比作一条跑道,链表中有环,
那么这条跑道就是一条圆环跑道,在一条圆环跑道中,两
个人有速度差,那么迟早两个人会相遇,只要相遇那么就说明有环。

在这里插入图片描述

  /**
     * 判断链表中是否有环
     * @param first 链表首结点
     * @return ture为有环,false为无环
     */
    public static boolean isCircle(Node<String> first) {
        Node<String> slow = first;
        Node<String> fast = first;
        while(fast!=null && fast.next!=null){
            fast = fast.next.next;
            slow = slow.next;
            if (fast.equals(slow)){
                return true;
            }
        }
        return false;
    }
有环链表入口问题
//测试类
public class Test {
    public static void main(String[] args) throws Exception {
        Node<String> first = new Node<String>("aa", null);
        Node<String> second = new Node<String>("bb", null);
        Node<String> third = new Node<String>("cc", null);
        Node<String> fourth = new Node<String>("dd", null);
        Node<String> fifth = new Node<String>("ee", null);
        Node<String> six = new Node<String>("ff", null);
        Node<String> seven = new Node<String>("gg", null);
//完成结点之间的指向
        first.next = second;
        second.next = third;
        third.next = fourth;
        fourth.next = fifth;
        fifth.next = six;
        six.next = seven;
//产生环
        seven.next = third;
//查找环的入口结点
        Node<String> entrance = getEntrance(first);
        System.out.println("first链表中环的入口结点元素为:"+entrance.item);
    }
    /**
     * 查找有环链表中环的入口结点
     * @param first 链表首结点
     * @return 环的入口结点
     */
    public static Node getEntrance(Node<String> first) {
        return null;
    }
    //结点类
    private static class Node<T> {
        //存储数据
        T item;
        //下一个结点
        Node next;
        public Node(T item, Node next) {
            this.item = item;
            this.next = next;
        }
    }
}
需求:
请完善Test类中的getEntrance方法,查找有环链表中环的入口结点。当快慢指针相遇时,我们可以判断到链表中有环,这时重新设定一个新指针指向链表的起点,且步长与慢指针一样为1,则慢指针与“新”指针相遇的地方就是环的入口。证明这一结论牵涉到数论的知识,这里略,只讲实现。

在这里插入图片描述

 /**
     * 查找有环链表中环的入口结点
     * @param first 链表首结点
     * @return 环的入口结点
     */
    public static Node getEntrance(Node<String> first) {
        Node<String> slow = first;
        Node<String> fast = first;
        Node<String> temp = null;
        while(fast!=null && fast.next!=null){
            fast = fast.next.next;
            slow=slow.next;
            if (fast.equals(slow)){
                temp = first;
                continue;
            }
            if (temp!=null){
                temp=temp.next;
                if (temp.equals(slow)){
                    return temp;
                }
            }
        }
        return null;
    }
循环链表

循环链表,顾名思义,链表整体要形成一个圆环状。在单向链表 中,最后一个节点的指针为null,不指向任何结点,因为没有下 一个元素了。要实现循环链表,我们只需要让单向链表的最后 一个节点的指针指向头结点即可。

在这里插入图片描述

循环链表的构建:

public class Test {
    public static void main(String[] args) throws Exception {
//构建结点
        Node<Integer> first = new Node<Integer>(1, null);
        Node<Integer> second = new Node<Integer>(2, null);
        Node<Integer> third = new Node<Integer>(3, null);
        Node<Integer> fourth = new Node<Integer>(4, null);
        Node<Integer> fifth = new Node<Integer>(5, null);
        Node<Integer> six = new Node<Integer>(6, null);
        Node<Integer> seven = new Node<Integer>(7, null);
//构建单链表
        first.next = second;
        second.next = third;
        third.next = fourth;
        fourth.next = fifth;
        fifth.next = six;
        six.next = seven;
//构建循环链表,让最后一个结点指向第一个结点
        seven.next = first;
    }
}
约瑟夫问题
问题描述:
传说有这样一个故事,在罗马人占领乔塔帕特后,39个犹太人与约
瑟夫及他的朋友躲到一个洞中,39个犹太人决定宁愿死也不要被
敌人抓到,于是决定了一个自杀方式,41个人排成一个圆圈,
第一个人从1开始报数,依次往后,如果有人报数到3,那么这个
人就必须自杀,然后再由他的下一个人重新从1开始报数,直
到所有人都自杀身亡为止。然而约瑟夫和他的朋友并不想
遵从。于是,约瑟夫要他的朋友先假装遵从,他将朋友与自
己安排在第16个与
第31个位置,从而逃过了这场死亡游戏 。
问题转换:
41个人坐一圈,第一个人编号为1,第二个人编号为2,
第n个人编号为n。
1.编号为1的人开始从1报数,依次向后,报数为3的那个人退出圈;
2.自退出那个人开始的下一个人再次从1开始报数,以此类推;
3.求出最后退出的那个人的编号。

在这里插入图片描述

解题思路:
1.构建含有41个结点的单向循环链表,分别存储1~41的值,
分别代表这41个人;
2.使用计数器count,记录当前报数的值;
3.遍历链表,每循环一次,count++;
4.判断count的值,如果是3,则从链表中删除这个结点并打
印结点的值,把count重置为0;
public class Test {
    public static void main(String[] args) throws Exception {
//1.构建循环链表
        Node<Integer> first = null;
//记录前一个结点
        Node<Integer> pre = null;
        for (int i = 1; i <= 41; i++) {
//第一个元素
            if (i==1){
                first = new Node(i,null);
                pre = first;
                continue;
            }
            Node<Integer> node = new Node<>(i,null);
            pre.next = node;
            pre = node;
            if (i==41){
//构建循环链表,让最后一个结点指向第一个结点
                pre.next=first;
            }
        }
//2.使用count,记录当前的报数值
        int count=0;
//3.遍历链表,每循环一次,count++
        Node<Integer> n = first;
        Node<Integer> before = null;
        while(n!=n.next){
//4.判断count的值,如果是3,则从链表中删除这个结点并打印结点的值,把count重置为0;
            count++;
            if (count==3){
//删除当前结点
                before.next = n.next;
                System.out.print(n.item+",");
                count=0;
                n = n.next;
            }else{
                before=n;
                n = n.next;
            }
        }
        /*打印剩余的最后那个人*/
        System.out.println(n.item);
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值