中国剩余定理

设x∈Z,存在

{ L = r 1   ( m o d   p 1 ) L = r 2   ( m o d   p 2 ) L = r 3   ( m o d   p 3 ) \left\{ \begin{aligned} L & = r_1 \ (mod \ p1) \\ L & = r_2 \ (mod \ p2) \\ L & = r_3 \ (mod \ p3) \end{aligned} \right. LLL=r1 (mod p1)=r2 (mod p2)=r3 (mod p3)

{ P = p 1 p 2 p 3 . . . p n P i = P p i t i 是 P i 关 于 p i 的 逆 元 , 即 P i t i ≡ 1   ( m o d   p i ) \left\{ \begin{aligned} P & = p_1p_2p_3...p_n \\ P_i & = \frac {P}{p_i} \\ t_i & 是P_i关于p_i的逆元,即P_it_i ≡ 1 \ (mod \ p_i) \end{aligned} \right. PPiti=p1p2p3...pn=piPPipiPiti1 (mod pi)

L = ∑ i = 1 n a i P i t i L = \sum_{i=1}^{n}a_iP_it_i L=i=1naiPiti

扩展欧几里得求L即可

例题:https://vjudge.net/problem/LightOJ-1319

板子:

const int N=12+7;
ll p[N],r[N];
int n;
ll P=1;
ll exgcd(ll a,ll b,ll &x,ll &y)//gcd(a,b)=ax+by;返回值gcd
{
    if(b==0)
    {
        x=1;y=0;
        return a;
    }
    ll g=exgcd(b,a%b,x,y);
    int z=x;
    x=y;
    y=z-y*(a/b);
    return g;
}
void solve()
{
    ll ans=0;
    for(int i=1;i<=n;i++)
    {
        ll pi=P/p[i];
        ll ti,y;
        exgcd(pi,p[i],ti,y);
        ans+=r[i]*pi*ti;
    }
    cout<<(ans%P+P)%P<<endl;
    return ;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

第十页

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值