薄膜的覆盖能力怎么改善呢?

知识星球(星球名:芯片制造与封测技术社区,星球号:63559049)里的学员问:薄膜的覆盖能力怎么改善呢?有哪些方法。

什么是台阶覆盖能力?

640 (2)

如上图,

台阶覆盖性指的是薄膜在非平坦表面,(如台阶或缝隙)上的沉积均匀性和覆盖效果。

如果台阶覆盖性好,薄膜在每个部位的厚度与质量几乎是一样的。但是一般镀膜时,并不能做到100%的共形性,特别是台阶结构越复杂,就越考验薄膜的台阶覆盖能力。
为什么在台阶结构时会出现覆盖不均?

1,物理限制。以蒸镀为例,被蒸发的材料原子或分子以直线路径沉积到基板表面。这种直线传播方式使得在具有复杂形状中,任何突起或凹陷的区域都会产生阴影效应,材料难以到达侧壁和底部,从而导致共形性差。

2,材料在晶圆表面的迁移能力影响其共形性。平面结构更容易迁移,复杂的结构不易迁移。

640

影响台阶覆盖能力的因素及改善措施?

1,沉积方式不同。

一般来说CVD(如LPCVD,ALD)比PVD(蒸镀,溅射)的台阶覆盖性好,PVD中溅射的台阶覆盖新又比蒸镀好。因此选择合适的沉积方式很重要。

2,工艺参数。

气压:较低的气压有利于提高沉积物质的迁移率,从而改善台阶覆盖能力。

温度:较高的沉积温度通常有助于提高薄膜的迁移率和重排,从而增强覆盖能力。

电源功率,气体比例,偏压等对台阶覆盖性均有影响。因此对可能的影响做DOE实验,找出影响规律。IMG_258   

卷积神经网络(CNN)是针对多维网格数据(如图像、视频)设计的深度学习架构,其结构灵感来源于生物视觉系统对信息的分层处理机制。该模型通过局部连接、参数共享、层级特征提取等策略,有效捕获数据中的空间模式。以下从结构特性、工作机制及应用维度展开说明: **1. 局部连接与卷积运算** 卷积层利用可学习的多维滤波器对输入进行扫描,每个滤波器仅作用于输入的一个有限邻域(称为感受野),通过线性加权与非线性变换提取局部特征。这种设计使网络能够聚焦于相邻像素间的关联性,从而识别如边缘走向、色彩渐变等基础视觉模式。 **2. 参数共享机制** 同一卷积核在输入数据的整个空间范围内保持参数不变,大幅降低模型复杂度。这种设计赋予模型对平移变换的适应性:无论目标特征出现在图像的任何区域,均可由相同核函数检测,体现了特征位置无关性的建模思想。 **3. 特征降维与空间鲁棒性** 池化层通过对局部区域进行聚合运算(如取最大值或均值)实现特征降维,在保留显著特征的同时提升模型对微小形变的容忍度。这种操作既减少了计算负荷,又增强了特征的几何不变性。 **4. 层级特征抽象体系** 深度CNN通过堆叠多个卷积-池化层构建特征提取金字塔。浅层网络捕获点线面等基础模式,中层网络组合形成纹理部件,深层网络则合成具有语义意义的对象轮廓。这种逐级递进的特征表达机制实现了从像素级信息到概念化表示的自动演进。 **5. 非线性扩展与泛化控制** 通过激活函数(如ReLU及其变体)引入非线性变换,使网络能够拟合复杂决策曲面。为防止过拟合,常采用权重归一化、随机神经元失活等技术约束模型容量,提升在未知数据上的表现稳定性。 **6. 典型应用场景** - 视觉内容分类:对图像中的主体进行类别判定 - 实例定位与识别:在复杂场景中标定特定目标的边界框及类别 - 像素级语义解析:对图像每个像素点进行语义标注 - 生物特征认证:基于面部特征的个体身份鉴别 - 医学图像判读:辅助病灶定位与病理分析 - 结构化文本处理:与循环神经网络结合处理序列标注任务 **7. 技术演进脉络** 早期理论雏形形成于1980年代,随着并行计算设备的发展与大规模标注数据的出现,先后涌现出LeNet、AlexNet、VGG、ResNet等里程碑式架构。现代研究聚焦于注意力分配、跨层连接、卷积分解等方向,持续推动模型性能边界。 卷积神经网络通过其特有的空间特征提取范式,建立了从原始信号到高级语义表达的映射通路,已成为处理几何结构数据的标准框架,在工业界与学术界均展现出重要价值。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值