Leetcode 64. 最小路径和

文章介绍了LeetCode问题64的解决方案,使用动态规划方法求解最小路径和,通过状态转移方程f[i][j]=min(f[i-1][j],f[i][j-1])+grid[i][j]计算网格中的最小路径和,最终返回右下角的值。
摘要由CSDN通过智能技术生成

Leetcode 64. 最小路径和

思路:
  • 状态表示:

    • 设 f 为大小 m * n 的矩阵,其中 f[i][j] 代表走到 (i, j) 的路径和
  • 属性:计算路径和的最小值

  • 状态计算:

    题目要求,只能向右或向下走,也就是说单元格 (i, j) 只能从左方单元格 (i - 1, j)或者上方单元格 (i, j - 1) 走到,因此只需要考虑矩阵的左边界和上边界

    • f[i, j] = “从左方单元格 (i - 1, j) 与从上方单元格 (i, j - 1) 走来的两个最小路径和中较小的” + 当前单元格值 grid[i][j] 。具体可以分为以下 4 种情况:
      • 当左边和上边都不是边界时:if (i && j) f[i][j] = min(f[i - 1][j], f[i][j - 1]) + grid[i][j] ;
      • 当只有左边是矩阵边界时:只能从上面来,即:if (j) f[i][j] = f[i][j - 1] + grid[i][j]
      • 当只有上边是矩阵边界时:只能从左边来,即: if (i) f[i][j] = f[i - 1][j] + grid[i][j]
      • 当左边和上边都是边界时,即是起始点: f[i][j] = grid[i][j]
代码:
class Solution {
public:
    int minPathSum(vector<vector<int>>& grid) {
        int n = grid.size(), m = grid[0].size();
        vector<vector<int>> f(n, vector<int>(m, 1000));

        for (int i = 0; i < n; i ++ )
        {
            for (int j = 0; j < m; j ++ )
            {
                if (!i && !j) f[i][j] = grid[i][j];
                else
                {
                    if (i) f[i][j] = min(f[i][j], f[i - 1][j] + grid[i][j]);
                    if (j) f[i][j] = min(f[i][j], f[i][j - 1] + grid[i][j]);
                }
            }
        }

        return f[n - 1][m - 1];
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值