经典算法之分治法 递归与分治 学习笔记

经典算法之分治法 递归与分治 学习笔记

分治法思想

当要求解的问题规模较大时,将一个难以解决的大问题分割成一些规模较小的相同类子问题,以便各个击破,分而治之。

四大特征

该问题的规模缩小到一定的程度就可以容易地解决
该问题可以分解为若干个规模较小的相同问题,即该问题具有最优子结构性质
利用该问题分解出的子问题的解可以合并为该问题的解
该问题所分解出的各个子问题是相互独立的,即子问题之间不包含公共的子问题

应用条件

1.大问题可以分割成k个子问题(1<k<=n );

子问题规模仍不够小,则可以继续递归划分

2.子问题均可解;

通常是原问题的较小模式,通常可以采用递归求解

3.子问题的解可以求出原问题的解;

将解合并成原问题的解,自底向上

复杂性分析

T ( n ) = { O ( 1 )               n = 1 k T ( n / m ) + f ( n )   n > 1 T\left( n \right) =\left\{ \begin{array}{c} O\left( 1 \right) \ \ \ \ \ \ \ \ \ \ \ \ \ n=1\\ kT\left( n/m \right) +f\left( n \right) \ n>1\\ \end{array} \right. T(n)={O(1)             n=1kT(n/m)+f(n) n>1

其中,f(n)代表n/m个子问题合并成原问题的解需要的时间;k为分解成的子问题的个数;n/m为子问题的规模。

根据迭代法,求解得到:
T ( n ) = n log ⁡ m k + ∑ j = 0 log ⁡ m n − 1 k j f ( n / m j ) T\left( n \right) =n^{\log _mk}+\sum_{j=0}^{\log _mn-1}{k^jf\left( n/m^j \right)} T(n)=nlogmk+j=0logmn1kjf(n/mj)

递归函数

当一个函数及它的一个变量是由函数自身定义时,称这个函数是双递归函数。

分治法应用
  • 二分搜索问题

    给定已按升序排好序的n个元素a[0:n-1],现要在这n个元素中找出一特定元素x。

    代码如下:

  template<class Type> 
  int BinarySearch(Type a[], const Type& x, int l, int r){
       while (r >= l){ 
          	int m = (l+r)/2;
          	if (x == a[m]) return m;
          	if (x < a[m]) r = m-1; 
  			else l = m+1;}
       return -1;
  } 

最坏情况下的计算时间复杂性为O(logn)

先留下目录,对应算法慢慢更。

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值