经典算法之贪心算法 学习笔记
贪心算法介绍
理解
贪心算法是局部最优的,大多数情况下也是整体最优。
贪心算法通常以自顶向下的方式进行,以迭代的方式作出相继的贪心选择,每作一次贪心选择就将所求问题简化为规模更小的子问题。
基本要素
1.贪心选择性质
指所求问题的整体最优解可以通过一系列局部最优的选择,即贪心选择来达到。
对于一个具体问题,要确定它是否具有贪心选择性质,必须证明每一步所作的贪心选择最终导致问题的整体最优解。
2.最优子结构性质
当一个问题的最优解包含其子问题的最优解时,称此问题具有最优子结构性质。
与动态规划的不同
贪心算法直接做出当前问题中看起来最优的解,而不是考虑到子问题的解。
在动态规划中,往往每一个步骤都求做一个选择,这个选择往往依赖于子问题的解;
是自底向上的;
具有重叠子问题。
在贪心算法中,总是做出当时看来最佳的选择,然后再求解剩下唯一的子问题;
做出选择时可能会依赖于之前的选择或者子问题的解,但绝对不依赖于将来的选择或者子问题的解;
是自顶向下的。
贪心算法应用
-
活动安排问题
-
最优装载问题
-
哈夫曼编码
-
单源点最短路径(Dijkstra算法)
-
最小生成树
Prim算法
Kruskal算法
-
多机调度问题
具体实现代码戳蓝色查看