【NOJ1044】【算法实验三】独轮车

1044.独轮车

时限:1000ms 内存限制:10000K 总时限:3000ms
描述
独轮车的轮子上有红、黄、蓝、白、绿(依顺时针序)5种颜色,在一个如下图所示的20*20的迷宫内每走一个格子,轮子上的颜色变化一次。独轮车只能向前推或在原地转向。每走一格或原地转向90度均消耗一个单位时间。现给定一个起点(S)和一个终点(T),求独轮车以轮子上的指定颜色到达终点所需的最短时间。

在这里插入图片描述

输入
本题包含一个测例。测例中分别用一个大写字母表示方向和轮子的颜色,其对应关系为:E-东、S-南、W-西、N-北;R-红、Y-黄、B-蓝、W-白、G-绿。在测试数据的第一行有以空格分隔的两个整数和两个大写字母,分别表示起点的坐标S(x,y)、轮子的颜色和开始的方向,第二行有以空格分隔的两个整数和一个大写字母,表示终点的坐标T(x,y)和到达终点时轮子的颜色,从第三行开始的20行每行内包含20个字符,表示迷宫的状态。其中’X’表示建筑物,’.'表示路.

输出
在单独的一行内输出一个整数,即满足题目要求的最短时间。

输入样例
3 4 R N
15 17 Y
XXXXXXXXXXXXXXXXXXXX
X.X...XXXXXX......XX
X.X.X.....X..XXXX..X
X.XXXXXXX.XXXXXXXX.X
X.X.XX....X........X
X...XXXXX.X.XX.X.XXX
X.X.XX....X.X..X.X.X
X.X.X..XX...XXXX.XXX
X.X.XX.XX.X....X.X.X
X.X....XX.X.XX.X.X.X
X.X.X.XXXXX.XX.X.XXX
X.X.X.XXXXX....X...X
X.X.......X.XX...X.X
X.XXX.XXX.X.XXXXXXXX
X.....XX.......X...X
XXXXX....X.XXXXXXX.X
X..XXXXXXX.XXX.XXX.X
X.XX...........X...X
X..X.XXXX.XXXX...XXX
XXXXXXXXXXXXXXXXXXXX

输出样例
56

#include <iostream>
#include <queue>
using namespace std;
 
//注:题中坐标从【1,1】开始
//但本代码中坐标从【0,0】开始
//因此对sx,sy,tx,ty都做了-1处理
 
/*****数据输入所需变量*****/
int sx,sy;
char sc,sd;
 
int tx,ty;
char tc;
 
char maze[20][20];
/***************************/

/******广搜所用数据结构********/
struct node
{
    int x;
    int y;
    int color;  //颜色,0-R-红,1-Y-黄,2-B-蓝,3-W-白,4-G-绿
    int dire;   //方向:0-E-东,1-S-南,2-W-西,3-N-北
};
 
node start,target;
 
queue <node> q1;
 
int used[20][20][5][4];
int time[20][20][5][4];
 
int walk[4][2]= //向前走一格的坐标变化
{
    0, +1,  //0-E-东
    +1, 0,  //1-S-南
    0, -1,  //2-W-西
    -1, 0   //3-N-北
};
/******************************/
 
/******函数声明********/
//输入数据函数
void input();
 
//初始化函数
void init();
 
//将代表颜色的字母转化为数字
int colorToInt(char c);
 
//将代表方向的字母转化为数字
int direToInt(char d);
 
//算法执行函数
int bfs();
 
//返回移动后的新节点(不保证有效)
node moveto(node now, int i);
 
//判断节点有效性
bool effective(node next);
 
//判断是否到达目标节点
bool isTarget(node next);
/***********************/
 
int main()
{
    input();
    init();
    cout<<bfs()<<endl;
    return 0;
}
 
//输入数据函数
void input()
{
    cin>>sx>>sy>>sc>>sd;
    cin.get();
    cin>>tx>>ty>>tc;
    cin.get();  //吃掉回车
 
    for(int i=0; i<20; i++)
    {
        for(int j=0; j<20; j++)
        {
            maze[i][j]=cin.get();
        }
        cin.get();  //吃掉回车
    }
}
 
//初始化函数
//因本题只有一个判例,而且本人巨懒
//故不初始化队列、判重数组、步数数组
void init()
{
    //设置初始节点
    start.x=sx-1;
    start.y=sy-1;
    start.color=colorToInt(sc);
    start.dire=direToInt(sd);
 
    //标记初始节点并入队
    used[start.x][start.y][start.color][start.dire]=1;
    q1.push(start);
 
    //设置目标节点
    target.x=tx-1;
    target.y=ty-1;
    target.color=colorToInt(tc);
}
 
//将代表颜色和方向的字母转化为数字
int colorToInt(char c)
{
    switch(c)
    {
        //关于颜色的转换
        case'R':return 0;
        case'Y':return 1;
        case'B':return 2;
        case'W':return 3;
        case'G':return 4;
    }
    return -1;
}
 
//将代表方向的字母转化为数字
int direToInt(char d)
{
    switch(d)
    {
        //关于方向的转换
        case'E':return 0;
        case'S':return 1;
        case'W':return 2;
        case'N':return 3;
    }
    return -1;
}
 
//算法执行函数
int bfs()
{
    node now,next;
    while(!q1.empty())
    {
        now=q1.front();
        q1.pop();
 
        for(int i=0; i<3; i++)  //0==向前走,1==原地左转,2==原地右转
        {
            next=moveto(now, i);    //移动后的新节点next
            if(effective(next))     //若有效
            {
                used[next.x][next.y][next.color][next.dire]=1;
                time[next.x][next.y][next.color][next.dire]=
                    1+time[now.x][now.y][now.color][now.dire];
 
                if(isTarget(next))  //判断是否到达目标
                {
                    return time[next.x][next.y][next.color][next.dire];
                }
                else    //若未到达目标则入队
                {
                    q1.push(next);
                }
            }
        }
    }
    return -1;
}
 
//返回移动后的新节点(不保证有效)
node moveto(node now, int i)
{
    node next;
 
    if(i==0)    //向前走一格
    {
        next.x=now.x+walk[now.dire][0];
        next.y=now.y+walk[now.dire][1];
        next.color=(now.color+1)%5;
        next.dire=now.dire;
    }
    else    //原地转向
    {
        next.x=now.x;
        next.y=now.y;
        next.color=now.color;
        if(i==1)    //左转
        {
            next.dire=(now.dire+4-1)%4;
        }
        else        //右转
        {
            next.dire=(now.dire+1)%4;
        }
    }
    return next;
}
 
//判断节点有效性
//无效条件:越界、撞墙、重复
bool effective(node next)
{
    if(next.x>=0&&next.x<20&&next.y>=0&&next.y<20)  //不越界
    {
        if(maze[next.x][next.y]!='X')   //不撞墙
        {
            if(!used[next.x][next.y][next.color][next.dire])    //不重复
            {
                return true;
            }
        }
    }
    return false;
}
 
//判断是否到达目标节点
bool isTarget(node next)
{
    if(next.x==target.x&&next.y==target.y&&next.color==target.color)
    {
        return true;
    }
    else
    {
        return false;
    }
}
哈夫曼编码是一种常用的数据压缩算法,可以将原始数据转换为更短的编码,从而减少存储空间。它的基本思想是:根据字符出现的频率,构建一颗二叉树,使得出现频率高的字符离根节点近,出现频率低的字符离根节点远。然后,对于每个字符,从根节点出发,沿着对应的路径到达该字符所在的叶子节点,记录下路径,作为该字符的编码。 哈夫曼编码的具体实现步骤如下: 1. 统计每个字符在原始数据中出现的频率。 2. 根据字符的频率构建哈夫曼树。构建方法可以采用贪心策略,每次选择出现频率最低的两个字符,将它们作为左右子节点,父节点的权值为两个子节点的权值之和。重复这个过程,直到只剩下一个根节点。 3. 对哈夫曼树进行遍历,记录下每个字符的编码,为了避免编码产生歧义,通常规定左子节点为0,右子节点为1。 4. 将原始数据中的每个字符,用它对应的编码来代替。这一步可以通过哈夫曼树来实现。 5. 将编码后的数据存储起来。此时,由于每个字符的编码长度不同,所以压缩后的数据长度也不同,但总体上来说,压缩效果通常是比较好的。 实现哈夫曼编码的关键在于构建哈夫曼树和计算每个字符的编码。构建哈夫曼树可以采用优先队列来实现,每次从队列中取出两个权值最小的节点,合并成一个节点,再将合并后的节点插入队列中。计算每个字符的编码可以采用递归遍历哈夫曼树的方式,从根节点出发,如果走到了左子节点,则将0添加到编码中,如果走到了右子节点,则将1添加到编码中,直到走到叶子节点为止。 以下是基于C++的代码实现,供参考: ```c++ #include <iostream> #include <queue> #include <string> #include <unordered_map> using namespace std; // 定义哈夫曼树节点的结构体 struct Node { char ch; // 字符 int freq; // 出现频率 Node* left; // 左子节点 Node* right; // 右子节点 Node(char c, int f) : ch(c), freq(f), left(nullptr), right(nullptr) {} }; // 定义哈夫曼树节点的比较函数,用于优先队列的排序 struct cmp { bool operator() (Node* a, Node* b) { return a->freq > b->freq; } }; // 构建哈夫曼树的函数 Node* buildHuffmanTree(unordered_map<char, int> freq) { priority_queue<Node*, vector<Node*>, cmp> pq; for (auto p : freq) { pq.push(new Node(p.first, p.second)); } while (pq.size() > 1) { Node* left = pq.top(); pq.pop(); Node* right = pq.top(); pq.pop(); Node* parent = new Node('$', left->freq + right->freq); parent->left = left; parent->right = right; pq.push(parent); } return pq.top(); } // 遍历哈夫曼树,计算每个字符的编码 void calcHuffmanCode(Node* root, unordered_map<char, string>& code, string cur) { if (!root) return; if (root->ch != '$') { code[root->ch] = cur; } calcHuffmanCode(root->left, code, cur + "0"); calcHuffmanCode(root->right, code, cur + "1"); } // 将原始数据编码成哈夫曼编码 string encode(string s, unordered_map<char, string> code) { string res; for (char c : s) { res += code[c]; } return res; } // 将哈夫曼编码解码成原始数据 string decode(string s, Node* root) { string res; Node* cur = root; for (char c : s) { if (c == '0') { cur = cur->left; } else { cur = cur->right; } if (!cur->left && !cur->right) { res += cur->ch; cur = root; } } return res; } int main() { string s = "abacabad"; unordered_map<char, int> freq; for (char c : s) { freq[c]++; } Node* root = buildHuffmanTree(freq); unordered_map<char, string> code; calcHuffmanCode(root, code, ""); string encoded = encode(s, code); string decoded = decode(encoded, root); cout << "Original string: " << s << endl; cout << "Encoded string: " << encoded << endl; cout << "Decoded string: " << decoded << endl; return 0; } ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值