文献笔记 —— GIDS: GAN based Intrusion Detection System for In-Vehicle Network

文献笔记 —— GIDS: GAN based Intrusion Detection System for In-Vehicle Network(GIDS: 基于GAN的车载网络入侵检测系统)

这篇文章是2018年发布在Privacy, Security and Trust (PST)会议上的。

Author: Eunbi Seo; Hyun Min Song; Huy Kang Kim
Date of Conference: 28-30 Aug. 2018
Date Added to IEEE Xplore: 01 November 2018
INSPEC Accession Number: 18229294
DOI: 10.1109/PST.2018.8514157
Publisher: IEEE

一、文章贡献

提出了一种新的车载网络入侵检测模型——基于深度学习模型的生成对抗网络入侵检测系统(GIDS)

  • 可扩展性:车内环境变化对于GIDS的检测没有影响;
  • 有效性:GIDS可以只学习正常的数据,因此可以检测入侵而不受限于特定类型的攻击(可以检测到未使用的未知攻击);
  • 安全性:GIDS是一种具有黑盒特性的深度学习模型,攻击者很难操控检测系统的内部结构。

二、相关概念

数据集相关

  • CAN总线:控制区域网络(CAN)是一种标准的
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值