文献笔记 —— GIDS: GAN based Intrusion Detection System for In-Vehicle Network(GIDS: 基于GAN的车载网络入侵检测系统)
这篇文章是2018年发布在Privacy, Security and Trust (PST)会议上的。
Author: Eunbi Seo; Hyun Min Song; Huy Kang Kim
Date of Conference: 28-30 Aug. 2018
Date Added to IEEE Xplore: 01 November 2018
INSPEC Accession Number: 18229294
DOI: 10.1109/PST.2018.8514157
Publisher: IEEE
一、文章贡献
提出了一种新的车载网络入侵检测模型——基于深度学习模型的生成对抗网络入侵检测系统(GIDS)
- 可扩展性:车内环境变化对于GIDS的检测没有影响;
- 有效性:GIDS可以只学习正常的数据,因此可以检测入侵而不受限于特定类型的攻击(可以检测到未使用的未知攻击);
- 安全性:GIDS是一种具有黑盒特性的深度学习模型,攻击者很难操控检测系统的内部结构。
二、相关概念
数据集相关
- CAN总线:控制区域网络(CAN)是一种标准的