文章目录
week 0
分析核心商业模式:花时间(社交平台)、花钱(电商)、提效(WPS)
进而提出一个概念 北极星指标(north star metric)
北极星指标的关键标准:能体现核心价值、是一个先导指标而非滞后指标、易于理解、可指导行动随时改进。
→北极星指标 引申资料
Week 1 指标体系
1、What
指标体系是包含三个部分:把北极星指标拆出来
1指标体系:
2数据字典:统一数据采集的口径、触发条件、变量的明确含义等,又称metadata
→metadata元数据前沿 引申资料 没必要看
3业务看板:是否有层次递进关系(因此指标体系需要三级) 拆分是否合适
2、How
理论:结合OSM和UJM模型打造数据指标体系
OSM(object strategy measure)
UJM 用户旅程地图
区别与关系:OSM是自上而下的,其中的M(度量)就是需要采集的指标,可以链接到UJM
实践:五步法
- 关键节点 (一般是 注册 购买 推荐等,就是将O拆解出来后的小目标或是该目标对应的策略点S,因此实际上这一步是O-S的连接)
- 预期目标
- 衡量指标 (这一步 是S-M的连接)
- 达成路径(利用UJM去考虑,关键是完整)
- 数据归因(关注各个路径的入口流量和 转化率)
PS:如果看不懂也没有关系,记住这张图,在最后视频番外篇的用户流转地图讲的更清晰
3、在分析具体问题的注意点
- 优先找低曝光高转化率的入口 提高该入口
构建三维坐标,根据业务的目标(走量还是利润)来决定曝光的顺序
- 关键词搜索可以做成词云
其次要提高搜索的成功率例如:
- 找开发增加更多的有效索引(比如将“169”返回特定色号的口红)
- 多从用户角度思考(在护肤水分类下搜索面膜应该仍然要出现面膜,可以参考淘宝逻辑)
*实际操作(海底捞小程序)
作业讲解在week3提到了 埋点成本(先埋入口和终点 随后进行分析 再对中间路径进行具体埋点)
(突发的问题:数据分析并切实落实策略以后,如何判断这个改变是正确还是不正确,程度如何衡量,是直接进行环比还是也要考虑同比,亦或者要增加更精细化的考虑?
1、比如考虑策略试行期间的外部环境影响,比如恰逢节日?因此是否要关注同行业内其他对手的数据情况,再做相对对比,这样一来细分行业数据集成是否也是有一定的发展前景?
2、再比如内部影响,比如公司在策略试行的前中后推出了一款爆款竞品,该新产品对原来的产品有一定的替代性,从而短时间内减少了原产品的销量,会不会策略其实是有效的,但因替代产品的短时间走高而造成我原产品数据下降呢?亦或者从北极星指标来看,公司总体因为新品提高了GMV,如何判断对原产品策略的有效性呢?
3、最后 如果)
看完了全部视频后的答案:数据分析≠业务分析,实际过程中我们主要着眼于大框架和业务逻辑,数据只是支持我们业务分析的工具,因此不需要太关注数据的处理方式和数据细节(Maybe)
Week 2 用户留存
初步印象
/喜茶:正因为高回购率才有高估值
留存分析的两个关键:
- 确定留存周期
- 确定用户使用产品的核心关键行为(如何判断一个用户是留存用户)
1、判定用户留存的初步口径
2、进阶口径(用户差异对比)
- 先将用户群体的细分
不同渠道(抖音引入、小红书引入等 \ 安卓 IOS端)
不同产品属性(元气森林的不同口味等)
不同的支付方式(支付宝 微信 美团支付等)
…
核心是区分不同的用户从而判断用户群的不同业务价值,做出针对性留存政策;甚至为后续的AB test的做基础(例如FB永远有一部分用户看不到广告,是FB为了研究广告对用户留存的影响而特定设定的数据样本,做数据分析)
- 不同用户群体的留存差异分析
3、活跃用户的留存
*What :什么是活跃用户
可分为四类:
- 留存用户 (上周出现 本周也出现)
- 新用户
- 回流用户(上周没出现 本周出现)
- 流失用户(上周出现 本周没出现)
如何判断活跃用户的留存:增长指数指标(下面第5点会有更详细的数据分析标准)
*How:如何对活跃用户进行留存
- 方法一: Hook 模型留存 (培养用户行为习惯)
也称为钩子,主要分为4个阶段:
触发(Trigger)、行动(Action)、多样化的酬赏(Variable Reward)和投入(Investment)这四个动作的设计,打造闭环,不断让用户对产品上瘾。
核心是培养用户的行为习惯(为什么有点像训dog。。bushi
在建立起Hook模型后,数据分析要关注Action阶段,即做了Action的用户和没做Action的用户之间的留存率差异。
引申链接:从心理学角度分析为什么用Hook模型做用户留存
(解决Why的问题)
- 方法二: 功能价值矩阵分析 (对已有功能进行分析和改进 促进用户留存)
那么如何确定资源倾斜于哪个功能?
- 第一步:绘制产品功能留存价值矩阵(气泡图)
矩阵内的功能解读:
(PS:这个图XY轴反了)
进一步:选定一个功能后(如下厨房APP中“收藏菜谱”功能),发现单个用户使用该功能的次数也有所不同,如何知道收藏多少菜谱才最有可能留存住用户?
引出第二步
2. 第二步:做频次分析
- 第三步:找到拐点频次
在上图中可以确定为第四次,因此要推动用户收藏至少4次菜谱, 因为五次的人数少,达成该目标过于困难。
(个人想法:但实际上在所谓的拐点应该是边际效用最大点)
→参考链接:边际效用最大点、韦恩图法确定Aha时刻(细致版)
4、新用户的激活(How)
三个关键点:
- 找到对的人
- 找到对的事
- 推动用户行为
具体而言
①找到对的人 :增强获客渠道效率,找到和用户画像匹配度高的渠道。若某一渠道进来的用户留存率高,说明该渠道为优质渠道。
②找到对的事:就是找到能够留下用户的关键激活行为,对于新用户而言,该行为也被称为产品的Aha时刻。首先要找到最活跃、最优质的那批用户,然后通过上面的留存价值矩阵、频次分析去找。
注意:
找对的事的前提是找到对的人!
同时激活行为一般是比较前期的发帖、收藏行为,而付费、会员等一般不属于激活行为。
→引申链接1:如何系统地去找到Aha时刻?(推荐阅读)
→引申链接2:如何通过更唬人的相关性分析确定Aha时刻?
③推动用户行为:优化产品路径
- 注意路径的逻辑性和简洁性
- 尽可能地减少和用户的摩擦(不轻易向用户索要权限)
- 激励用户快速体验Aha时刻
5、查看新用户激活情况
- 手枪图
以下内容 视频逻辑混乱 笔记暂时不细致整理
实践展示:如何提升up值
*ARPU 客单价 (每用户平均收入,Average Revenue Per User)
读作up值
[公式] 月总收入 \ 月付费用户数=arpu 单位(元/月)
核心思路是:提高每单均价、提高消费频率
1、描述现状数据
右上角的2% 意思是:有2%的客户在Q3消费0-40元,在Q4变成消费大于330元
2、用机器学习挑选出核心特征分析
3、以各个特征为依据,做具体的用户群·结构分析。
- 例如 对判断出来的低阶人群给满100-30的优惠券
对中阶人群给出满250-50的优惠券
对高阶人群不推行优惠券政策,采用其他留存手段
还有诸如 对无锡人 推荐甜口味
对长沙人推荐辣口味
4、得出结构性结论
5、根据结论推行不同的运营方案
最后用数据对方案效果进行监控追踪,对方案进行迭代,实现最终目标。
*上述流程输出报告大致为下图
左边就是由机器学习选中的特征
Week 3 转化分析
转化是相对于激活来讲的,转化直接的目的就是营收
转化分析和漏斗模型密不可分
用户的转化是一个路径,一定要在全局的(漏斗)视角下进行,然后再进行局部的改进
基本流程
1. 对主线路径定性
- 从全局的角度,画出漏斗图,分析每个大节点的转化率(大节点就是关键的节点 一般是注册 下单 购买等)
2. 对支线进行定量
简而言之找 完成‘购买’这个关键节点的具体小路径有哪些?
比如有搜索、Banner、推荐页、详情页、分3类、分享等等
工具推荐桑基图
注意点:有时两个小入口的用户有高度的重合性,此时就不需一定要挑选出一个最好的。(举个例子,加入购物车和立即购买两个入口,在某个商品下,第一次点击立即购买的人可能第二次会点击加入购物车,因此并不需要区分,这两个按钮同时出现在一个页面也是可以的)
3. 评估效果,优化迭代
提高入口流量、提高转化效率等
具体实践中的注意点:
- 关注在整个路径中有没有其他影响因素(被页面其他无关按钮,比如导航栏,分流出去了,此时可以用网站热力图分析)
→引申链接:如何进行页面热力图分析 虽然GIO自己也有 - 人力去假设一些流失的场景和可能性,随后进行具体的用户行为日志细查进行数据分析去验证假设的合理性。
- 找到不合理的路径/回流的路径/高摩擦路径(分析用户在节点页面的停留时间,时间过长可能有不合理路径的出现。)
- 对具体按钮/路径入口的 “不合理”文案解释,并通过论坛等社交软件观察用户痛点
案例分析:
案例1:不合理路径
我们首先分析整体的路径转化率,发现了一个流失率过高的主路径节点,在定量中发现客户在 上传身份证界面 停留时间过多;发现用户点击了微信传图路径,但是之后又选择了PC传图路径,最后才成功,这就找到了不合理路径,因此做出假设微信路径有问题;同时根据经验判断PC上传是一条高摩擦路径,于是考虑彻底将这里的路径全都改成手机拍照上传。
第8个视频是案例分析,实在太好困了 ,我真的顶不住了
Week 4 获客与裂变
和前面的内容其实有一定的重复性,
我理解上面的内容更多的是分析产品的长期获客。
而这部分内容更多的是以某次策划活动为基础,来分析一场策划活动的质量。
其中获客偏向于“公域”(百度广告 微博)
裂变偏向于“私域”(小程序)
1、获客渠道起点
要熟悉用户旅程
2、获客六大触点
其实就是用户和产品接触的6个关键节点
和用户旅程有点类似
具体如下:
1. 站外渠道
→引申链接:什么是PV、UV他们的区别是什么?
2. 展示创意
图片一定要带二维码
3. 投放URL
关键是上面的第四点 一定要做好追踪和测量(监测真假流量)
4.落地页建设
- 落地页质量:Banner、创意页上的内容要和落地页的内容匹配
- 用户的匹配度
衡量标准:经验、LIFT转化心理模型(见PDF《提升流量转化率》)
5.辅助转化文案即CTA
比如其他用户的评论之类的
6.产品转化流
(以上内容好像都跟运营更相关)
作为数据分析主要应该是关注每一个接触点的转化率,进行分析
其中判断渠道质量好坏的最关键的有三个指标
-
跳出率
用气泡图去直观分析
题外话:在很多优惠活动中,如果用户的访问时间很短,访问页数也低很可能是目的性很强的“机器人" “羊毛党”,但也可能是一部分优质新用户,一定要注意分析 -
注册转化率
-
交易转换率
最后可以通过对上面三个指标加权?反正一个综合的指标去总览所有判断渠道的质量
GIO有一套专门的分析渠道体系,见PDF
视频还提到了舆情监控,用来监控口碑、公开的投诉
以上内容在PDF内有一份优秀作业,可以作为脑图形式的总结。
3、裂变(私域)
笔者写在前面的话:
2021/5/15 微信宣布停止小程序跳转APP的功能,所以私域流量可能面临一个巨大挑战,这堂课的内容实用性相对变小。
但逻辑仍然值得学习。
一般我们只关注病毒传播系数K=i x c
即只关注两个——分享侧、打开分享侧
- 分享侧衡量
-
产品的自身价值 (目前有很多品类就很难做私域社群流量,比如医美,用户使用产品后不会广而告之,只能进行点对点的裂变)
-
激励机制(瑞幸咖啡分享咖啡券,自己也得咖啡券;积分;精神需求)
-
恰当的时机(计算关联系数找到用户最愿意分享的时机,在该时机设置分享按钮)
-
衡量分享侧效果的指标:
- 打开分享侧衡量
-
最关键的就是“黄金一页”落地页(保证落地页和分享内容高度匹配,同时能够促进用户)
在上个视频中 用户六大触点的第四个触点内容一致 -
衡量打开分享侧的数据指标:
- 衡量整个活动质量的指标
-
分享病毒系数(衡量获客能力)
=转发分享带来的用户 / 进行分享的用户 -
图谱找出 KOL关键意见领袖(key opinion leader)
营销学概念,通常被定义为拥有更多更准确的产品信息.且为相关群体所接受或信任,并对该群体的购买行为有较大影响力的人。
在第一次裂变中,要找出精确到用户的KOL。
-
二度裂变规模系数=二度转发带来的用户 / 一度转发带来的用户
(衡量转化动力的衰减程度)
第一批用户转发带来了第二批用户群,这就是分母
第二批用户转发带来了第三批用户群,这就是分子
可以衡量活动中用户分享动力的衰减程度
同理可以算N度裂变规模系数 -
监控所有渠道的获客转化变现(可以对不同二维码跟踪,分析不同渠道数据)
-
入口场景监控
*小程序拉新获客具体例子(连咖啡)
- 找出场景入口TOP5
- 无埋点分析场景的转化数据
(线下也可以通过不同的二维码看不同线下门店的拉新能力)
3.找到超级传播者KOL
*小程序的留存
对于小程序来说,用户不需要进行关注收藏,最多只是加入“我的小程序”,因此小程序有天然的留存劣势(所以一般会有一个公众号绑定运营)
但即使如此依旧能进行一些留存手段(这部分内容和week2有重复)
利用数据分析找到最能留住用户的行为
课程回顾
用户流转地图
建议从32分钟开始看
没有找到课件所以不高兴做笔记了,但是内容逻辑清晰,时间较短
以电商为例讲解了三张流转地图
AARRR模型
在用户运营体系中,有一个经典的框架叫做AARRR,即拉新(Acquisition)、转化(Activation)、留存(Retention)、收益(Revenue)、自传播(Refer)。这个模型可以帮助我们更好地理解用户生命周期,采取有针对性的营销。
RFM模型
什么是RFM?RFM最早产生于电商领域,根据客户的交易频次和交易额衡量客户的价值,对客户进行细分。
RFM是衡量客户价值的三个维度,分别为R(Recency)交易间隔、F(Frequency)交易频度、M(Monetary)交易金额组成。