BitMap的原理和应用

BitMap的使用场景

bitmap一般用作大数据的去重,过滤,排序,以及用户画像中。
BloomFilter使用bitmap进行数据过滤以及近似去重,用户画像中使用bitmap记录一个标签对应的人群(bitmap可以很好的进行与或运算,快速计算出多个标签的人群)。
bitmap可以高效的计算与和或运算
在这里插入图片描述但是bitmap不能进行非运算,可以通过对一个全量的bitmap进行异或(^)运算实现。
在这里插入图片描述

原理实现

谷歌开源的EWAHCCompressBitMap实现了优化的bitmap。其对bitmap的空间存储实现进行了优化,通过long[]实现bitmap,每个原属,将long数组中的每个元素(word)分为了存储数据的word(LW)和存储跨度信息的word(RLW),通过RLW节省了存储空间。
如下存储2、4、64、127、400000这几个uid只需要少量的word即可。对于这种稀疏的bitmap节省了大量的存储空间。
在这里插入图片描述

图解BitMap

### Bitmap 工作原理 Bitmap 是一种利用位数组来表示集合的数据结构。每个元素对应于位数组中的一个位置,该位置上的值可以是 0 或者 1,用来指示特定元素是否存在于此集合之中[^1]。 #### 数据压缩机制 当使用 bitmap 方式进行数据压缩时,仅需少量空间即可记录大量信息。例如,在某些场景下,只需 `64x32 bit` 的 RAM 就能完成目标。具体来说,RAM 中每一个比特位都代表着一条独立的信息;其中,“1” 表明相应项存在,“0” 则意味着缺失[^4]。 #### 时间复杂度优势 由于操作是在单个二进制位上执行,因此查找、插入或删除的时间复杂度均为 O(1),这使得 bitmap 成为了处理大规模数据集的理想工具之一[^5]。 ### 应用领域 #### 大规模数据分析 在 OLAP 引擎中广泛应用 bitmap 技术,尤其是在面对海量日志分析或是其他需要频繁聚合运算的任务时表现优异。这技术能够有效降低内存消耗的同时提升查询速度。 #### 实时/离线仓库管理 对于涉及多对多关系的企业与标签之间的关联问题,采用 bitmap 可显著减轻计算负担。比如统计某标签覆盖了多少家企业,或者是反向追溯哪些标签适用于指定公司等操作都能得到优化解决[^3]。 #### 高效索引构建 像 roaring bitmap 这样的高级变种形式更是引入了更复杂的压缩策略(如 RLE),从而进一步减少了存储需求并增强了性能。这对于创建高效的倒排索引特别有用,特别是在搜索引擎等领域内[^2]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值