数论 - 欧拉函数【 普通求法 + 筛法求欧拉函数 】

欧拉函数

1.定义

对于正整数n,欧拉函数是小于或等于n的正整数中(即1-n中)与n互质的数的数目,记作φ(n)
其中φ(1)=1。

2求n的欧拉值

在这里插入图片描述

3.结论

![在这里插入图片描述](https://img-blog.csdnimg.cn/20200724120852476.png

4.代码模板:

int phi(int x)
{
    int res = x;
    for (int i = 2; i <= x / i; i ++ )
        if (x % i == 0)
        {
            res = res / i * (i - 1);
            while (x % i == 0) x /= i;
        }
    if (x > 1) res = res / x * (x - 1);

    return res;
}

5.筛法求欧拉函数

int primes[N], cnt;     // primes[]存储所有素数
int euler[N];           // 存储每个数的欧拉函数
bool st[N];         // st[x]存储x是否被筛掉


void get_eulers(int n)
{
    euler[1] = 1;
    for (int i = 2; i <= n; i ++ )
    {
        if (!st[i])
        {
            primes[cnt ++ ] = i;
            euler[i] = i - 1;
        }
        for (int j = 0; primes[j] <= n / i; j ++ )
        {
            int t = primes[j] * i;
            st[t] = true;
            if (i % primes[j] == 0)
            {
                euler[t] = euler[i] * primes[j];
                break;
            }
            euler[t] = euler[i] * (primes[j] - 1);
        }
    }
}

质数i的欧拉函数即为euler[i] = i - 1 因为1到i−1均与i互质,共i−1个。
euler[primes[j] * i]分为两种情况:
① i % primes[j] == 0时:primes[j]是i的最小质因子,也是primes[j] * i的最小质因子,因此1 - 1 / primes[j]这一项在euler[i]中计算过了,只需将基数N修正为primes[j]倍,最终结果为euler[i] * primes[j]。
② i % primes[j] != 0:primes[j]不是i的质因子,只是primes[j] * i的最小质因子,因此不仅需要将基数N修正为primes[j]倍,还需要补上1 - 1 / primes[j]这一项,因此最终结果euler[i] * (primes[j] - 1)。

6.题目练习

(1)AcWing -873. 欧拉函数

给定n个正整数ai,请你求出每个数的欧拉函数。
欧拉函数的定义
在这里插入图片描述

输入格式
第一行包含整数n。
接下来n行,每行包含一个正整数ai。
输出格式
输出共n行,每行输出一个正整数ai的欧拉函数。
数据范围
1≤n≤100,
1≤ai≤2∗109
输入样例:
3
3
6
8
输出样例:
2
2
4
代码

#include<iostream>
#include<cstdio>
#include<algorithm>
using namespace std;
int main()
{
	int n;
	cin >> n;
	while (n--)
	{
		int a;
		cin >> a;
		int ans = a;
		for (int i = 2; i <= a / i; i++)
		{
			if (a%i == 0)
			{
				ans = ans / i * (i - 1); //避免越界
				while (a%i == 0)
				{
					a /= i;
				}
			}
		}
		if (a > 1) ans = ans / a * (a - 1);
		cout << ans << endl;
	}
	return 0;
}

(2)AcWing- 874. 筛法求欧拉函数

给定一个正整数n,求1~n中每个数的欧拉函数之和。
输入格式
共一行,包含一个整数n。
输出格式
共一行,包含一个整数,表示1~n中每个数的欧拉函数之和。
数据范围
1≤n≤106
输入样例:
6
输出样例:
12
代码

#include<iostream>
#include<cstdio>
typedef long long ll;
using namespace std;
const int N = 1e6 + 10;
int primes[N], cnt;
int euler[N];
bool st[N];
void get_eulers(int n)
{
	euler[1] = 1;
	for (int i = 2; i <= n; i++)
	{
		if (!st[i])
		{
			primes[cnt++] = i;
			euler[i] = i - 1;
		}
		for (int j = 0; primes[j] <= n / i; j++)
		{
			st[i*primes[j]] = 1;
			if (i%primes[j] == 0)
			{
				euler[i*primes[j]] = euler[i] * primes[j];
				break;
			}
			euler[i*primes[j]] = euler[i] * (primes[j] - 1);
		}
	}
}
int main()
{
	int n;
	cin >> n;
	get_eulers(n);
	ll ans = 0;
	for (int i = 1; i <= n; i++)
	{
		ans += euler[i];
	}
	cout << ans << endl;
	return 0;
}

  • 1
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
欧拉函数(Euler's Totient Function),也称为积性函数,是指小于等于正整数n的数中与n互质的数的个数。我们通常用φ(n)表示欧拉函数。 具体来说,如果n是一个正整数,那么φ(n)表示小于等于n的正整数中与n互质的数的个数。例如,φ(1)=1,因为1是唯一的小于等于1的正整数且1与1互质;φ(2)=1,因为小于等于2的正整数中只有1与2互质;φ(3)=2,因为小于等于3的正整数中与3互质的数是1和2。 欧拉函数的计算方有很多,下面介绍两种常见的方: 1. 分解质因数 将n分解质因数,假设n的质因数分别为p1, p2, …, pk,则φ(n) = n × (1 - 1/p1) × (1 - 1/p2) × … × (1 - 1/pk)。例如,对于n=30,我们将其分解质因数得到30=2×3×5,则φ(30) = 30 × (1-1/2) × (1-1/3) × (1-1/5) = 8。 2. 我们可以使用(Sieve)来计算欧拉函数。具体地,我们可以先将φ(1)至φ(n)全部初始化为其下标值,然后从2开始遍历到n,将所有能被当前遍历到的数整除的数的欧拉函数值减1即可。例如,对于n=6,我们先初始化φ(1)=1, φ(2)=2, φ(3)=3, φ(4)=4, φ(5)=5, φ(6)=6,然后从2开始遍历,将2的倍数的欧拉函数值减1,即φ(4)=φ(6)=2;然后遍历3,将3的倍数的欧拉函数值减1,即φ(6)=2。最终得到φ(1)=1, φ(2)=1, φ(3)=2, φ(4)=2, φ(5)=4, φ(6)=2。 欧拉函数数论中有很重要的应用,例如RSA算的安全性就基于欧拉函数的难解性。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

林小鹿@

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值