数论---欧拉函数,筛法求欧拉函数

欧拉函数

欧拉函数f(N)=N*(1-\frac{1}{p1})(1-\frac{1}{p2})...(1-\frac{1}{pk})

互质:一个数不能被另一个数整除,表示互质,1,-1能与任何数互质

证明:欧拉函数表示的是1~N中与N互质的数

N能够被拆分为多个质因子,p1,p2,p3,p4...pk,并且有相应的指数

与分解质因数类似

#include <iostream>
#include <algorithm>
using namespace std;

int phi(int x)
{
    int res=x;
    for(int i=2;i<=x/i;i++)
    if(x%i==0)
    {
        res=res/i*(i-1);
        while(x%i==0) x/=i;
    }
    if(x>1)    //最后一个数不为1,表示最大质因子
        res=res/x*(x-1);
    return res;
}

int main()
{
    int t;
    cin>>t;
    while(t--)
    {
        int a;
        cin>>a;
        cout<<phi(a)<<endl;
    }
    return 0;
}

筛法求欧拉函数

筛法求欧拉函数直接套用线性筛的模板就可以了

f(N)=N*(1-\frac{1}{p1})(1-\frac{1}{p2})...(1-\frac{1}{pk})

分为以下三种情况考虑

  • i是质数                        i的欧拉函数值=i-1(从定义出发)
  • pj是i的质因子              pj*i的欧拉函数值=phi[i]*j (从欧拉函数展开式出发)
  • pj不是i的质因子          pj*i的欧拉函数值=phi[i]*pj*(1-1/pj)

第二种情况证明

 

第三种情况证明

 

#include <iostream>
#include <algorithm>
using namespace std;
const int N=1e6+10;
typedef long long ll;
int phi[N];
int primes[N],cnt;
bool st[N];

ll get_oula(int n)
{
    ll res=0;
    phi[1]=1;
    for(int i=2;i<=n;i++)
    {
        if(!st[i]) 
        {
            primes[cnt++]=i;
            phi[i]=i-1; //质数前面所有数都互质
        }
        for(int j=0;primes[j]<=n/i;j++)
        {
            int t=primes[j]*i;
            st[t]=true;
            if(i%primes[j]==0) 
            {
                phi[t]=primes[j]*phi[i];
                break;
            }
            phi[t]=phi[i]*(primes[j]-1);
        }
    }
    for(int i=1;i<=n;i++)
        res+=phi[i];
    return res;
}

int main()
{
    int n;
    cin>>n;
    cout<<get_oula(n)<<endl; 
    return 0;
}

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
欧拉函数(Euler's Totient Function),也称为积性函数,是指小于等于正整数n的数中与n互质的数的个数。我们通常用φ(n)表示欧拉函数。 具体来说,如果n是一个正整数,那么φ(n)表示小于等于n的正整数中与n互质的数的个数。例如,φ(1)=1,因为1是唯一的小于等于1的正整数且1与1互质;φ(2)=1,因为小于等于2的正整数中只有1与2互质;φ(3)=2,因为小于等于3的正整数中与3互质的数是1和2。 欧拉函数的计算方有很多,下面介绍两种常见的方: 1. 分解质因数 将n分解质因数,假设n的质因数分别为p1, p2, …, pk,则φ(n) = n × (1 - 1/p1) × (1 - 1/p2) × … × (1 - 1/pk)。例如,对于n=30,我们将其分解质因数得到30=2×3×5,则φ(30) = 30 × (1-1/2) × (1-1/3) × (1-1/5) = 8。 2. 我们可以使用(Sieve)来计算欧拉函数。具体地,我们可以先将φ(1)至φ(n)全部初始化为其下标值,然后从2开始遍历到n,将所有能被当前遍历到的数整除的数的欧拉函数值减1即可。例如,对于n=6,我们先初始化φ(1)=1, φ(2)=2, φ(3)=3, φ(4)=4, φ(5)=5, φ(6)=6,然后从2开始遍历,将2的倍数的欧拉函数值减1,即φ(4)=φ(6)=2;然后遍历3,将3的倍数的欧拉函数值减1,即φ(6)=2。最终得到φ(1)=1, φ(2)=1, φ(3)=2, φ(4)=2, φ(5)=4, φ(6)=2。 欧拉函数数论中有很重要的应用,例如RSA算的安全性就基于欧拉函数的难解性。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值