1.题目
有一间长方形的房子,地上铺了红色、黑色两种颜色的正方形瓷砖。
你站在其中一块黑色的瓷砖上,只能向相邻(上下左右四个方向)的黑色瓷砖移动。
请写一个程序,计算你总共能够到达多少块黑色的瓷砖。
输入格式
输入包括多个数据集合。
每个数据集合的第一行是两个整数 W 和 H,分别表示 x 方向和 y 方向瓷砖的数量。
在接下来的 H 行中,每行包括 W 个字符。每个字符表示一块瓷砖的颜色,规则如下
1)‘.’:黑色的瓷砖;
2)‘#’:白色的瓷砖;
3)‘@’:黑色的瓷砖,并且你站在这块瓷砖上。该字符在每个数据集合中唯一出现一次。
当在一行中读入的是两个零时,表示输入结束。
输出格式
对每个数据集合,分别输出一行,显示你从初始位置出发能到达的瓷砖数(记数时包括初始位置的瓷砖)。
数据范围
1≤W,H≤20
输入样例:
6 9
…#.
…#
…
…
…
…
…
#@…#
.#…#.
0 0
输出样例:
45
2思路
dfs从起点搜索可以到达的所有点,注意输入时,先输入的列,然后是行。
3.代码
//dfs(x,y) 从(x,y)出发可以到达的点的数量
#include<iostream>
#include<cstring>
using namespace std;
const int N=30;
char g[N][N];
bool st[N][N];
int n,m;
int dx[4]={-1,0,1,0},dy[4]={0,1,0,-1};
int dfs(int x,int y) //内部搜索不需要回溯,保证每个点只被遍历一次
{
int cnt=1;
st[x][y]=true;
for(int i=0;i<4;i++)
{
int a=x+dx[i],b=y+dy[i];
if(a<0||a>=n||b<0||b>=m) continue;
if(st[a][b]) continue;
if(g[a][b]=='#') continue;
cnt+=dfs(a,b);
}
return cnt;
}
int main()
{
while(cin>>m>>n,n||m)
{
for(int i=0;i<n;i++) cin>>g[i];
int x,y;
for(int i=0;i<n;i++)
for(int j=0;j<m;j++)
if(g[i][j]=='@')
{
x=i,y=j;
}
cout<<dfs(x,y)<<endl;
memset(st,0,sizeof st);
}
return 0;
}