将两个及其以上的有序表合并为一张有序表,把待排序序列通过分治法分为若干个有序子序列,然后每两个子序列合并为一个子序列,经过多次合并后整合为一张有序表(给出代码实现以及运行结果)。

归并排序

介绍
归并排序是建立在归并操作上的一种有效的排序算法,该算法是采用分治法 ( D i v i d e a n d C o n q u e r ) (DivideandConquer) (DivideandConquer)的一个非常典型的应用。将已有序的子序列合并,得到完全有序的序列;即先使每个子序列有序,再使子序列段间有序。若将两个有序表合并成一个有序表,称为二路归并。

归并排序的基本思想:

将两个及其以上的有序表合并为一张有序表,把待排序序列通过分治法分为若干个有序子序列,然后每两个子序列合并为一个子序列,经过多次合并后整合为一张有序表。

时间复杂度

归并排序的时间复杂度是 O ( n l o g n ) O(nlogn) O(nlogn),速度快,同时归并排序是稳定的排序,即相等的元素的顺序不会改变,如输人记录1(1) 3(2) 2(3) 2(4) 5(5) (括号中是记录的关键字)时输出的1(1) 2(3) 2(4) 3(2) 5(5)中的2和2是按输人的顺序。这对要排序数据包含多个信息而要按其中的某一个信息排序,要求其它信息尽量按输人的顺序排列时很重要,这也是它比快速排序优势的地方。

实现

2-路归并排序的原理是,将序列两两分组,将序列归并为n/2个组,组内单独排序;然后将这些组再两两归并,生成n/4个组,组内再单独排序;以此类推,直到只剩下一个组为止。

下面来看一一个例子,要将序列{66, 12, 33, 57, 64, 27, 18}进行2-路归并排序。

①第一趟。两两分组,得到四组: {66, 12}、 {33,57}、 {64,27}、 {18}, 组内单独排序,得到新序列{12, 66}, {33, 57}, {27, 64}, {18}}.

②第二趟。将四个组继续两两分组,得到两组: {12, 66, 33,57}、{27, 64, 18},组内单独排序,得到新序列{{12, 33, 57, 66}, {18, 27, 64}}.

③第三趟。将两个组继续两两分组,得到一组: {12, 33, 57, 66, 18, 27, 64},组内单独排序,得到新序列{12, 18, 27, 33, 57, 64, 66}。算法结束。
在这里插入图片描述

代码

//归并排序模板
const int maxn = 1e5 + 10;
int a[maxn],b[maxn];
void msort(int l, int r)
{
	if (l == r) return;   //如果只有一个数字则返回,无需排序
	int mid = (l + r) / 2;
	msort(l, mid);       //分解左序列
	msort(mid + 1, r);   //分解右序列
	int i = l, j = mid + 1, k = l;
	while (i <= mid && j <= r)
	{
		if (a[i] <=a[j])
		{
			b[k] = a[i]; k++; i++;
		}
		else
		{
			b[k] = a[j]; k++; j++;
		}
	}
	while (i <= mid)   //复制左边子序列剩余
	{
		b[k] = a[i]; k++; i++;
	}
	while (j <= r)     //复制右边子序列剩余
	{
		b[k] = a[j]; k++; j++;
	}
	for (int i = l; i <= r; i++)
	{
		a[i] = b[i];
	}
}

简化版

const int maxn = 1e5 + 10;
int q[maxn], tmp[maxn];
void merge_sort(int q[], int l, int r)
{
	if (l >= r)  return; //如果只有一个数字或没有数字,则无需排序
	int mid = (l + r ) /2;
	merge_sort(q, l, mid);       //分解左序列
	merge_sort(q, mid + 1, r); //分解右序列
	int k = l, i = l, j = mid + 1;
	while (i <= mid && j <= r)   //合并
	{
		if (q[i] <= q[j]) tmp[k++] = q[i++];
		else tmp[k++] = q[j++];
	}
	while (i <= mid) tmp[k++] = q[i++];   //复制左边子序列剩余
	while (j <= r) tmp[k++] = q[j++];    //复制右边子序列剩余
	for (int i = l; i <= r; i++) q[i] = tmp[i];
}

习题

给定你一个长度为 n 的整数数列。

请你使用归并排序对这个数列按照从小到大进行排序。

并将排好序的数列按顺序输出。

输入格式
输入共两行,第一行包含整数 n。

第二行包含 n 个整数(所有整数均在 1∼109 范围内),表示整个数列。

输出格式
输出共一行,包含 n 个整数,表示排好序的数列。

数据范围
1≤n≤100000
输入样例:
5
3 1 2 4 5
输出样例:
1 2 3 4 5

完整代码

#include<iostream>
#include<cstdio>
using namespace std;
const int N = 1e5+10;
int q[N],tmp[N];
void merge_sort(int q[],int l,int r)
{
    if(l >= r) return ;
    int mid = (l+r)/2;
    merge_sort(q,l,mid);
    merge_sort(q,mid+1,r);
    int i = l, k =l, j = mid + 1;
    while(i<=mid&&j<=r)
    {
        if(q[i]<q[j]) tmp[k++] = q[i++];
        else tmp[k++] = q[j++];
    }
    while(i<=mid) tmp[k++] = q[i++];
    while(j<=r)   tmp[k++] = q[j++];
    for(int i = l; i <= r; i++)  q[i] = tmp[i];
} 
int main()
{
    int n;
    cin>>n;
    for(int i = 0; i < n; i++) cin>>q[i];
    merge_sort(q,0,n-1);
    for(int i = 0; i < n; i++) cout<<q[i]<<' ';
    cout<<endl;
    return 0;
}

运行结果

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

林小鹿@

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值