剑指 Offer 54. 二叉搜索树的第k大节点【c++/java详细题解】

1、题目

给定一棵二叉搜索树,请找出其中第k大的节点。

示例 1:

输入: root = [3,1,4,null,2], k = 1
   3
  / \
 1   4
  \
   2
输出: 4

示例 2:

输入: root = [5,3,6,2,4,null,null,1], k = 3
       5
      / \
     3   6
    / \
   2   4
  /
 1
输出: 4

限制:

1 ≤ k ≤二叉搜索树元素个数

2、思路

(dfs) O ( n ) O(n) O(n)

什么是二叉搜索树 ?

二叉搜索树是一棵有序的二叉树,所以我们也可以称它为二叉排序树。具有以下性质的二叉树我们称之为二叉搜索树:若它的左子树不为空,那么左子树上的所有值均小于它的根节点;若它的右子树不为空,那么右子树上所有值均大于它的根节点。它的左子树和右子树分别也为二叉搜索树。

二叉搜索树的中序遍历是:左=>根=>右; 二叉搜索树的中序遍历从小到大是有序的。

中序遍历模板

//打印中序遍历
void dfs(TreeNode* root ) 
{
    if(!root) return;
    dfs(root->left); 	//左
    print(root->val);   //根
   	dfs(root->right);	//右
}

如图所示

因此求二叉搜索树第 k大的节点” 可转化为求 “二叉搜索树的中序遍历倒序的第k 个节点”。

过程如下:

  • 1、按照右->根->左的顺序(中序遍历倒序)遍历二叉树

  • 2、我们每次遍历一个节点的时候就让k--,当k减为0时,我们就找到了第k大的节点。

具体实现细节看代码。

时间复杂度分析: 每个节点最多只会被遍历1次,因此n个节点,时间复杂度为 O ( n ) O(n) O(n)

3、c++代码

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode(int x) : val(x), left(NULL), right(NULL) {}
 * };
 */
class Solution {
public: 
    int res;
    int kthLargest(TreeNode* root, int k) {
        dfs(root,k);
        return res;
    }
    void dfs(TreeNode* root ,int &k) //传引用 这里需要保证所有dfs函数共用一个k 
    {
        if(!root) return;
        dfs(root->right,k); //右
        k--;
        if(!k) res = root->val; //根
        dfs(root->left,k); //左
    }
};

4、java代码

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode(int x) { val = x; }
 * }
 */
class Solution {
    int res;
    int index = 0; //计数器
    public int kthLargest(TreeNode root, int k) {
        dfs(root,k);
        return res;
    }
    void dfs(TreeNode root ,int k) 
    {
        if(root == null) return;
        dfs(root.right,k); //右
        index++;
        if(k == index) res = root.val; //根
        dfs(root.left,k); //左
    }
}

原题链接: 剑指 Offer 54. 二叉搜索树的第k大节点
在这里插入图片描述

  • 14
    点赞
  • 16
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 19
    评论
上选点是蓝桥杯Java题目中的一种类型,通常需要在给定的结构中选择一个或多个节点作为目标节点,并进行相应的操作。下面是一个简单的上选点蓝桥Java题解的示例: 题目描述: 给定一棵有N个节点,每个节点上都有一个非负整数值。现在需要选择一些节点,使得选择的节点的值之和最大,且所选节点不能相邻(即选了一个节点,则其父节点和子节点都不能选)。请编写一个程序,计算出最大的节点值之和。 解题思路: 这是一个典型的动态规划问题。我们可以定义一个数组dp,其中dp[i]表示以第i个节点为根节点的子中所选节点的最大值之和。对于每个节点i,有两种情况: 1. 选择节点i:则其子节点都不能选,所以dp[i] = val[i] + dp[grandchild1] + dp[grandchild2] + ... 2. 不选择节点i:则其子节点可以选择或不选择,所以dp[i] = max(dp[child1], dp[child2], ...) 根据以上思路,我们可以使用递归或者迭代的方式来计算dp数组。最终,所求的最大值即为dp,其中1表示根节点。 代码示例: ```java public class TreeSelectPoint { public static void main(String[] args) { int[] values = {0, 1, 2, 3, 4, 5}; // 节点值数组,下标从1开始 int[][] edges = {{1, 2}, {1, 3}, {2, 4}, {2, 5}}; // 的边关系数组 int n = values.length - 1; // 节点个数 int[] dp = new int[n + 1]; // 动态规划数组 // 构建的邻接表 List<List<Integer>> adjacencyList = new ArrayList<>(); for (int i = 0; i <= n; i++) { adjacencyList.add(new ArrayList<>()); } for (int[] edge : edges) { int u = edge[0]; int v = edge[1]; adjacencyList.get(u).add(v); adjacencyList.get(v).add(u); } dfs(1, -1, values, adjacencyList, dp); // 从根节点开始进行深度优先搜索 System.out.println(dp[1]); // 输出最大节点值之和 } private static void dfs(int cur, int parent, int[] values, List<List<Integer>> adjacencyList, int[] dp) { dp[cur] = values[cur]; // 初始化当前节点的dp值为节点值 for (int child : adjacencyList.get(cur)) { if (child != parent) { // 避免重复访问父节点 dfs(child, cur, values, adjacencyList, dp); dp[cur] += dp[child]; // 更新当前节点的dp值 } } } } ```

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 19
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

林小鹿@

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值